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Abstract

We develop a new estimator for impulse response functions in structural factor models

with the use of external instruments. In contrast to a traditional structural vector autore-

gression (SVAR), the use of a factor structure naturally deals with the non-fundamentalness

and singularity issues that plague SVARs. Additionally, our generalized method of moments

approach naturally allows for the joint use of multiple instruments to sharpen inference, an

overidentification test for the joint validity of instruments, and an automatic moment selection

procedure to select the correct instruments. Simulation results show the improvement in the

estimation accuracy of impulse response functions when more than one valid instrument is

used, and confirm the size and consistency of theory. We apply the proposed methodology to

estimate the effects of a monetary policy shock using a U.S. macroeconomic dataset with the

use of popular monetary policy instruments. The results show these monetary policy instru-

ments are all jointly valid, and that their joint use can result in more accurate and reasonable

estimates of the impulse response functions.
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1 Introduction

Since the seminal paper of Sims (1980), structural vector autoregressive (SVAR) models have re-

mained a popular and indispensable tool for identifying and estimating the effects of macroeconomic

shocks. A wide literature on SVAR modelling now exists (see the survery by Kilian and Lütkepohl,

2017), which has documented three challenging limitations that can preclude practitioners from

estimating the true impulse responses to structural shocks. First, SVAR models often suffer from

nonfundamentalness due to their inherent inability to include large information sets in a small

equation system. Indeed, policymakers have access to information sets which span over literally

hundreds of variables, and it is thus extremely difficult for the included variables in an SVAR sys-

tem to span the space spanned by the true structural shocks, (Sims, 1992; Bernanke et al., 2005).

Second, economic theory often implies the SVAR system specified is singular; that is, the number

of variables included are driven by a smaller number of structural shocks. This point is often over-

looked in the literature, as the number of structural shocks is usually implicitly set to be the same

number of variables included as part of the specification. Third, the validity of the identification

strategy required for an SVAR may be difficult to formally test for, in addition to each strategy

typically requiring the development of a specific estimation—and therefore asymptotic theory—for

inferential results. This latter point is particularly important, as this means that strategies such as

the inclusion of factors (as in the case of a factor-augmented vector autoregression model) require

the careful adaptation of existing theory in order to deal with nuisance parameters.

Ideally, practitioners would employ an estimation framework that addresses all three limitations

in a holistic way, as any one of these precludes the ability to recover the true impulse responses.

Instead however, these limitations have been typically dealt with in distinct, complex, and often-

times opposing ways. For example, nonfundamentalness is typically addressed by including more

variables that need to be justified to represent theoretical constructs (such as using GDP to repre-

sent “economic activity”), or factors estimated from a large dataset in a factor-augmented vector

autoregression (FAVAR), (e.g. Bernanke et al., 2005). However, as noted earlier, macroeconomic

theory often implies that a small number structural shocks drive a large number of variables, (e.g.

Sargent and Sims, 1977; Geweke, 1977) but including more variables therefore increases the chance
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on the specified system being singular. This problem is not even resolved by the FAVAR model.

As we will show, most FAVARs do not effectively distinguish between the so-called dynamic factors

and the static factors (i.e. the stacked lags of dynamic factors) whose dimension is typically larger.

This directly implies that the static factors, and therefore the FAVAR system, are necessarily sin-

gular, which requires special treatment, often in the form of an additional dimensional reduction

step, (e.g. Chan et al., 2020). Indeed, the direct augmentation of factors to a typical SVAR system

has been noted by Stock and Watson (2005) to be inconsistent with the primitives of the dynamic

factor model (DFM) used to compute factors in the first place, and it is therefore unclear whether

this could produce a compelling basis for structural identification at all. Furthermore, these issues

are compounded with the often wide, yet controversial, choices of identification strategies available

to practitioners. Examples include short-run/long-run exclusion restrictions, sign restrictions, and

identification via heteroskedasticity, (Stock and Watson, 2016). Among these, however, the method

of using external instruments (or proxies) has increasingly gained popularity for their parsimonious

set of identifying assumptions and ability to incorporate further external information into models.

However, formal extensions of external instruments to a data-rich environment generally remain

rare, and still suffer from limitations.

Our contribution to the literature is to provide a framework that addresses these three challeng-

ing limitations in a holistic approach. To do so, we propose the use of a structural factor model

(SFM) which naturally deals with the problems of nonfundamentalness and covariance singularity,

in conjunction with the use of multiple external instruments, which naturally allow for testing and

selecting valid identifying restrictions. The SFMs we work with were introduced by Stock and

Watson (2005), who were inspired by their success in macroeconomic forecasting. Unlike FAVAR

models, SFMs are directly formulated from the factor structure and aim to combine the attractive

features of large dimensional factor models and existing identification strategies employed in SVARs.

Since their introduction, they have received increasing attention in the literature for their ability

to estimate more reasonable and efficient impulse responses, which have been argued to be a direct

consequence of their ability to parsimoniously summarise large information sets - something that

is generally impossible or difficult to do within a standard SVAR framework. Similar to FAVAR

models, the factor structure in an SFM implies the appearance of many extra nuisance parameters,
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necessitating the development of estimator and relevant asymptotic theory that is often specific to

the identification scheme. To this end, we contribute to the literature by developing an asymptotic

theory that explicitly acknowledges the random rotation problem included in factor models, similar

to Bai and Ng (2006) and Yamamoto and Hara (2022). Furthermore, unlike existing attempts within

the SFM literature, we establish the validity of identification and estimation of impulse responses

with the use of multiple different instruments via the use of a generalised method-of-moments frame-

work. Altogether, these provide the familiar theoretical basis for us to develop analytical formulas

for statistical inference, such as confidence intervals, and overidentification and automatic moment

selection procedures for testing/choosing valid instruments. A Monte Carlo experiment shows that

the resulting estimators, tests, and selection criteria exhibit good finite sample performance.

Our work is related to the broader SVAR literature that achieves identification with external

instruments, and structural factor models that attempt to extend existing identification strategies

with factor models. For the former, the literature on identification in SVAR models is extensive, for

which a comprehensive summary of mainstream identification approaches is provided by Kilian and

Lütkepohl (2017). Since then, within the external instruments approach there have been further

developments. Stock and Watson (2018) provide a comparison of local projection instrument vari-

able (LP-IV) and SVAR-IV estimators, and show that SVAR-IV estimators do not require the strict

lead-lag exogeneity assumption of LP-IV. Montiel Olea et al. (2021) derive the asymptotic theory for

SVAR-IV. Cheng et al. (2021) derive the asymptotic theory for a generalised method-of-moments

estimator that is robust to non-stationarity, but do not pursue overidentification or moment selec-

tion procedures. Schlaak et al. (2023) combine identification via heteroskedasticity and external

instruments to sharpen inference. However, their framework is focused on using heteroskedastic-

ity to achieve exact identification; overidentification using external instruments then proceeds in a

proxy-SVAR framework. Importantly, their empirical study still focuses on using one instrument at

a time. For the latter, the literature for SFMs is less developed and has typically focused on older

identification strategies. Stock and Watson (2005) and Forni and Gambetti (2010a) use an SFM

and employ a slow-fast identification, though neither provide formal theoretical justification. Forni

et al. (2009) show that the presence of a factor structure in the data typically implies nonfunda-

mentalness in fixed dimensional SVARs. Han (2015) and Han (2018) develops inferential theory for
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the identification of impulses using a diverging and finite number of zero restrictions respectively.

Yamamoto and Hara (2022) develop inferential theory for the identification of impulse responses

using heteroskedasticity in a FAVAR model. Forni and Gambetti (2010b) utilise a SFM with sign

restrictions, the possibility of which is investigated by Gafarov et al. (2018).

To the best of our knowledge, there exist only a handful of papers that combine a structural

factor model with external instrument identification. Stock and Watson (2012) focus on one in-

strument at a time. Stock and Watson (2016), in their review, propose the use of a normalisation

scheme that allows for direct application of an SVAR identification scheme with an SFM. Both of

these only provide an estimation algorithm with little formal theoretical treatment of the proposed

estimators. Han (2024) proposes a unifying framework for the global identification of structural

impulse responses in factor models, but assumes that the number of static factors is equal to the

number of primitive shocks, ignoring singularity issues that could occur. Our theory differs from

the pre-existing literature in that we provide a formal theoretical treatment of the identification of

impulse responses through the use of a factor structure that summarises a data-rich environment, a

latent factor process that distinguishes between the static factor and primitive shocks, and a gener-

alised method-of-moments approach which allows for the joint use of multiple instruments and leads

to standard overidentification and instrument selection procedures to ensure that the identification

conditions are valid. These features of our proposed framework allow us to respectively deal with

the problems of nonfundamentalness, covariance singularity, and identification issues that plague

typical SVAR models, in a holistic fashion.

In an empirical application on quarterly U.S. macroeconomic data, we apply the proposed

method to study the dynamic causal effects of a monetary policy shock, and the validity of many

popular monetary policy instruments proposed by the literature. We find evidence that all the

monetary policy instrument considered are jointly valid, and that their joint use leads to more

efficient and reasonable impulse responses. In particular, we show that using one instrument at a

time is more prone to recovering puzzling responses.

The rest of the paper is organised as follows. Section 2 lays out the model setup, identification

strategy, and estimation. Section 3 presents the asymptotic theory. Section 4 conducts the Monte

Carlo study to confirm finite sample behaviour. Section 5 presents the empirical application. Sec-
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tion 6 concludes. All proofs are relegated to the Appendices. For notation, PZ = Z(Z⊤Z)−1Z⊤ and

MZ = I − PZ denote the projection and residual maker matrices for any matrix Z, respectively,

∥Z∥ =
[
tr(Z⊤Z)

]1/2
denotes the Euclidean norm, and p→ and d→ denote convergence in probability

and distribution, respectively.

2 Identification of Dynamic Responses in Structural Factor

Models

2.1 Model Setup

Consider the following structural model for t = 1, . . . , T,

Xt = ΛFt + et, (2.1)

Ft =
p∑

j=1
ΦjFt−j + Gηt, (2.2)

ηt = Aζt, (2.3)

where Xt = [x1t, . . . , xNt]⊤ is an N -dimensional vector, Ft is an r-dimensional set of unobserved

factors, Λ is the corresponding N × r factor-loading matrix, and et = [e1t, . . . , eNt]⊤ is an N -

dimensional idiosyncratic error term. The matrix G is an r × q matrix of rank q which maps the

q-dimensional reduced form shocks ηt to the lags of the factors, ζt are the structural shocks subject to

the identification condition E[ζtζ
⊤
t ] = Iq, and A is a q ×q nonsingular matrix. Unlike many existing

studies, we set focus on the case of q ≤ r to allow for dynamic factors. This is important, because

the case of q < r corresponds to a singular covariance structure in the static factors, rendering the

FAVAR, and even many existing SFM approaches untenable. The assumption of stationarity in Ft

implies

(Ir − Φ1L − · · · − ΦpLp)−1 =
∞∑

s=1
ΨsL

s, (2.4)

where Ψs is the coefficient matrix of the vector-moving average representation of Equation (2.2).
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Let Ft =
(
F ⊤

t , . . . , F ⊤
t−p

)⊤
collect the lags of Ft and Φ = [Φ1, . . . , Φp] collect the corresponding

coefficient matrices. Plugging Equations (2.2) and (2.3) into Equation (2.1), we have

Xt = ΠFt + Θηt + et (2.5)

= ΠFt + Γζt + et, (2.6)

where Π = ΛΦ, Θ = ΛG and Γ = ΘA. The matrix representations of Equations (2.5) and (2.6)

follow as

X = FΠ⊤ + ηΘ⊤ + e

= FΠ⊤ + ζΓ⊤ + e (2.7)

where X = [Xp+1, . . . , XT ]⊤, F = [Fp+1, . . . , FT ]⊤, η = [ηp+1, . . . , ηT ]⊤, ζ = [ζp+1, . . . , ζT ]⊤, and

e = [ep+1, . . . , eT ]⊤.

The OLS estimators for λ⊤
i and Λ are, respectively,

λ̂i = 1
T

T∑
t=1

F̂tXit,

Λ̂ = 1
T

T∑
t=1

XtF̂
⊤
t . (2.8)

To estimate the reduced form shocks, first note that the dynamic factor model in Equation (2.7)

implies a factor structure in the reduced form shocks, i.e. X − FΠ⊤ = ηΘ⊤ + e itself exhibits a

factor structure. Let

X̂ = MF̂X (2.9)

be a corresponding estimate of ηΘ⊤ + e. It follows that the reduced form shocks can then be

estimated via a second-stage principal components estimator. We set the estimated reduced shocks η̂

equal to
√

T − p times the eigenvectors corresponding to the first q eigenvalues of the (T −p)×(T −p)
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covariance matrix X̂X̂⊤. The OLS estimator for G can be computed as

Ĝ = F̂ ⊤η̂
(
η̂⊤η̂

)−1
= 1

T − p

T∑
t=p+1

F̂tη̂
⊤
t , (2.10)

which follows because F̂ and η̂ are orthogonal by design, and η̂⊤η̂/(T − p) = Iq by eigenidentity.

The estimator for Θ can be computed as

Θ̂ = Λ̂Ĝ, (2.11)

where we additionally use θ̂i to denote the transposition of the ith row of Θ̂. The estimator for Φ

via OLS is given by

Φ̂ = F̂ ⊤F̂
(
F̂⊤F̂

)−1
=
 T∑

t=p+1
F̂tF̂t

(F̂⊤F̂
)−1

. (2.12)

Given Φ̂, the estimates for Ψ̂s, s = 1, 2, . . . follow by inverting the lag polynomial in Equation (2.4).

Remark. We focus on the principal components of X̂X̂⊤ to estimate the reduced form shocks. An

alternative way to estimate ηt is to conduct a spectral decomposition of the variance of the residuals

ε̂t = F̂t − Φ̂F̂ (see, e.g. Forni et al., 2009; Forni and Gambetti, 2010a). Specifically, let Σ̂ε be the

sample covariance matrix of ε̂, D̂ be a diagonal matrix consisting of the first q eigenvalues of Σ̂ε in

descending order, and Ŝ be the corresponding associated eigenvectors. Then, η̆t ≡ D̂−1/2Ŝ ε̂t is an

alternative estimator for ηt because Σ̂ε is of rank q, asymptotically. Due to the use of a principal

components fit, it is likely that the theory developed for this paper can also be adapted for η̆t. The

simulation results of Han (2018) show that η̂t tends to produce more accurate estimates for ηt as

measured by trace R2 statistics, and we therefore leave the use of η̆t to future research.

2.2 Identification and Estimation with External Instruments

Suppose, without loss of generality, that we are interested in the effects of the first structural shock.

The preceding model setup dictates that the impulse response function (IRF) to the entire N panel
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of time series Xt to a one unit increase in the first structural shock is given by

∂Xt

∂ζ1,t−s

= ΛΨsGa1, (2.13)

where a1 denotes the first column of A, where its columns are partitioned as A =
[
a1 . . . aq

]
. In

the special case of s = 0, we set Ψs = Ir, so the contemporaneous response simplifies to

∂Xt

∂ζ1,t

= ΛGa1 = Θa1. (2.14)

The estimators for Λ, Ψs and G are described earlier, and thus it remains to find an appropriate

estimator for a1 to compute the IRF.

It is well known that principal components estimators are only consistent up to a rotation.

Specifically, the principal components-based estimator η̂t is only able to estimate its unobserved

counterpart ηt up to a rotation, which we denote as Hη, i.e. η̂t estimates H⊤
η ηt. The presence of this

rotational basis Hη will generally affect the distribution of the individual components, which enter

into the expression for the impulse response functions. We show that, however, the resulting estima-

tors of the impulse response functions are not affected by this rotation, and thus the identification

of the impulse response functions themselves is not affected. Identification proceeds by requiring

q −1 restrictions to identify a1 (assuming that the first element is fixed to unity). Unlike the typical

SVAR-IV case, the use of principal components estimator η̂t, which recovers H⊤
η ηt, implies that we

are instead identifying a∗
1 = H⊤

η a1.

We are interested in identifying a∗
1 with external instruments Zt ∈ Rk, which satisfy i) E(Ztζ1t) =

α ̸= 0k, and ii) E(Ztζjt) = 0k for j ̸= 1, which are the instrument relevance and exogeneity

conditions. We emphasise that these conditions are with respect to only the contemporaneous

shocks - these SVAR-IV conditions permit the instruments to be correlated with lagged values of

the non-target shocks, and is thus far less restrictive compared to the Local Projection (LP-IV)
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approach as noted by Stock and Watson (2018). Under these conditions, the instruments satisfy

E(H⊤
η ηtZ

⊤
t ) = E(H⊤

η AζtZ
⊤
t )

= H⊤
η a1α

⊤

= a∗
1α

⊤ ∈ Rq×k, (2.15)

and are thus able the identify a∗
1 up to a scale. The case of k = 1 instrument corresponds to q − 1

restrictions and suffices to just identify a∗
1; the system is overidentified if k > 1. In the traditional

SVAR setting, the reduced form shocks are estimated without the effect of Hη and thus the moment

conditions are E(ηtZ
⊤
t ) = a1α

⊤; estimation then proceeds by regressing each reduced form shock

on the first using the instrument(s) Zt via two stage least squares (2SLS) as in Ramey (2016), or a

generalised method-of-moments approach as in Cheng et al. (2021).

Without loss of generality, we normalise the first element of a∗
1 to be 1.1 This allows us to remove

the constant 1 and define the parameter

δ =
[
a∗

12, . . . , a∗
1q

]⊤
∈ Rq−1. (2.16)

With a∗
11 = 1, Equation (2.15) is therefore equivalent to the moment conditions

E
[(

(H⊤
η η)−1t − δη∗

1t

)
⊗ Zt

]
=E

[(
η∗

−1t − δη∗
1t

)
⊗ Zt

]
= 0 ∈ Rk(q−1), (2.17)

where η∗
1t is the first element of H⊤

η ηt and η∗
−1t is the rest of H⊤

η ηt with η∗
1t removed. Let η̂1t and

η̂−1t denote the principal components-based estimated counterparts of η∗
1t and η∗

−1t, respectively.

We estimate δ by minimising the generalised method-of-moments (GMM) criterion

QT (δ) = ḡT (δ)⊤WT ḡT (δ) (2.18)

1This corresponds to an additional scale assumption that H⊤
η,1α1 = 1, and is analogous to the innocuous identi-

fication condition of setting the first element of a1 to one in the case of ηt being observed or estimated without the
effects of Hη, as is the case in a traditional SVAR setting. In practice, any normalisation can be used afterwards,
such as the unit-effect normalisation.
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using the empirical moments

ḡT (δ) = 1
T − p

T∑
t=p+1

[(η̂−1,t − δη̂1,t) ⊗ Zt] (2.19)

and a weighting matrix WT . The first-order condition yields the GMM estimator

δ̂ = (AT WT A⊤
T )−1AT WT GT (2.20)

where

AT = Iq−1 ⊗

 1
T − p

T∑
t=p+1

η̂1,tZ
⊤
t

 , and GT = 1
T − p

T∑
t=p+1

(η̂−1,t ⊗ Zt) . (2.21)

If WT = Iq−1⊗
(

1
T −p

∑T
t=p+1 ZtZ

⊤
t

)−1
then δ̂ corresponds to the equation by equation 2SLS estimator

that is typically considered by the literature. By defining Vδ as the variance covariance matrix of GT ,

an optimal two-step GMM estimator δ̂o can be estimated as follows. In the first step, we use either

I(q−1)k or Iq−1 ⊗
(
T −1∑T

t=1 ZtZ
⊤
t

)−1
as the weighting matrix and compute the GMM estimator δ̂.

In the second step, we compute the feasible weight estimate as

V̂δ = [S
δ̂

⊗ Ik]Σ̂(1)
i [S

δ̂
⊗ Ik]⊤, (2.22)

where S
δ̂

is a (q − 1) × q matrix such that S
δ̂
η̂t = η̂−1t − δ̂η̂1t, which by definition is equal to

[δ̂...Iq−1(1 : q−1)] where Iq−1(1 : q−1) collects the q−1 matrix of Iq−1, and Σ̂(1)
i is a feasible estimate of

the variance of the instruments, detailed in Section 3.4. Note that, due to the effects of the generated

regressor, this is different to the implicit 2SLS weighting matrix Iq−1 ⊗
(

1
T

∑T
t=1 ZtZ

⊤
t

)−1
, even in

the absence of conditional heteroskedasticity.

2.3 Comparison With Existing Approaches in Factor Models

The identification scheme in this paper uses the information from an external instrument of the

structural shock, which is widely considered to be parsimonious in terms of identifying assumptions.

The literature on combining identification with external instruments with a factor structure has seen
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increasing, though still limited, attention.

This approach was initially proposed by Stock and Watson (2012). However, their methodology

in implementing the identification condition differs somewhat - instead of regressing the reduced

form shocks on each other in a typical IV regression as we have, they opt to regress the instrument on

all remaining reduced form shocks. Although both approaches are consistent at recovering the same

structural shock (see Montiel Olea et al., 2021, for a proof in an SVAR-IV context), our adoption

of a generalised method-of-moments framework allows researchers to easily adapt the wide array

of tools within that literature. This can be seen in how Stock and Watson (2012) only report the

estimated structural shock as estimated by each instrument one at a time, and investigate joint

validity of instruments by reporting their correlations, an approach that precludes the ability to

formally test joint validity. Whether this approach is correct in the context of factor models is

also unclear; Stock and Watson (2016) provide only an unjustified bootstrap algorithm to calculate

inferential quantities such as confidence intervals.

Stock and Watson (2016) justify this by proposing a “named factor” normalisation which allows

for the direct implementation of existing SVAR identification methods. However, this requires that

the space of the innovations to the first r common components span the space of the innovations of

the remaining variables. Although the theoretical assumptions this additionally imposes are mild, in

practice this is sensitive to the choice of named factor variables; one needs to ensure that the set of

named variables 1) be sufficiently heterogeneous, 2) are sufficiently representative of the remaining

groups of variables and 3) have innovations to their common components that sufficiently span the

space of the innovations to the factors. As explained by Han (2024), this normalisation is mostly

applicable in cases when the large dataset employed does not adequately capture the true structural

shock, such as in the case of oil shocks.

3 Asymptotic Theory

3.1 Assumptions

To analyse the properties of the proposed estimators, we make the following assumptions.
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Assumption 1. There exists a positive constant M < ∞ such that:

a) E∥Ft∥4 < M , 1
T

∑T
t=1 FtF

⊤
t

p→ ΣF , and 1
T

∑T
t=p+1 FtF⊤

t

p→ ΣF for some positive definite

matrices ΣF and ΣF .

b) E(ζtζ
⊤
t ) = Iq, E∥ζt∥4 < M , E(ζsζ

⊤
t ) = 0 for any s ̸= t, and 1

T −p

∑T
t=p+1 ζtζ

⊤
t

p→ Iq.

c) E
∥∥∥ 1√

T

∑T
t=p+1 ζtF⊤

t

∥∥∥2
< M .

Assumption 2. There exists a positive constant M such that:

a) E∥λi∥4 ≤ M ,
∥∥∥Λ⊤Λ/N

∥∥∥− ΣΛ
p→ 0 for some ΣΛ > 0.

b) rank(G) = q, ∥G∥ ≤ M , and ∥Φ∥ ≤ M .

c) All of the roots of |Iq − Φ1L − · · · − ΦpLp| = 0 are outside the unit circle.

d) The matrices ΣF ΣΛ and G⊤ΣΛG have distinct eigenvalues.

Assumption 3. There exists some positive constant M < ∞ such that for all N and T :

a) E(eit) = 0, E|eit|8 ≤ M .

b) E(e⊤
s et/N) = E(N−1∑N

i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M for all s, and

T −1∑T
t=1

∑T
s=1 |γN(s, t)| ≤ M .

c) E(eitejt) = τij,t, with |τij,t| < τij for some τij and for all t. In addition,

N−1∑N
i=1

∑N
j=1 |τij| ≤ M .

d) E(eitejs) = τij,ts, and (NT )−1∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M .

e) For every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤ M .

Assumption 4. The variables {λi}, {ζt}, and {eit} are mutually independent groups.

Assumption 5. There exists an M < ∞ such that for all T and N , and for every t ≤ T and i ≤ N

such that:

a) ∑T
s=1 |γN(s, t)| ≤ M .
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b) ∑N
k=1 |τki| ≤ M .

Assumption 6. There exists an M < ∞ such that for all N and T :

a) For each t, E
∥∥∥ 1

NT

∑T
s=1

∑N
k=1 Fs[eksekt − E(eksekt)]

∥∥∥2
≤ M , and

E
∥∥∥ 1

NT

∑T
s=p+1

∑N
k=1 ζs[eksekt − E(eksekt)]

∥∥∥2
≤ M .

b) E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 Ftλ

⊤
k ekt

∥∥∥2
≤ M .

c) E
∥∥∥ 1√

T N

∑T
t=p+1

∑N
i=1 λiei,t−jF⊤

t

∥∥∥2
≤ M and E

∥∥∥ 1√
T N

∑T
t=p+1

∑N
i=1 λiei,t−jζ

⊤
t

∥∥∥2
≤ M for j =

0, 1, . . . , p.

d) For each t, E
∥∥∥ 1√

N

∑N
i=1 λieit

∥∥∥2
≤ M .

e) For each i, E
∥∥∥ 1√

T

∑T
t=1 Fteit

∥∥∥4
≤ M and E

∥∥∥ 1√
T

∑T
t=p+1 ζteit

∥∥∥4
≤ M . For each i and for

j = 1, . . . , p, E
∥∥∥ 1√

T

∑T
t=p+1 F ⊤

t−jeit

∥∥∥4
≤ M .

Assumption 7. For i = 1, . . . , N ,

1√
T


vec

(
Z⊤η − E(Z⊤η)

)
F ⊤ei

vec
(
F⊤η

)


d→ N(0(qk+r+rpq)×1, Σi).

Assumption 8. The structural shock ζt is linked to the reduced form error by the linear transfor-

mation ηt = Aζt, for some nonsingular matrix A, and E(Ztζ
⊤
t ) = [α, 0k×(q−1)], where α ̸= 0k.

Assumptions 1 to 6 are either straight from, or slight modifications of, Assumptions A-G of Bai

(2003) and Assumptions 1-6 of Han (2018). Assumption 1 (a) regulates the moments of the static

factors. The positive definiteness of ΣF is the same as Assumption A10 of Amengual and Watson

(2007). Assumption 1 (b) restricts the structural shocks to be serially uncorrelated and have an

identity covariance matrix. Assumption 1 (c) is not restrictive because the structural shocks ζt

and lags of Ft are commonly assumed to be uncorrelated in the VAR literature. Assumption 2 (a)

follows from Assumption B of Bai (2003). Assumption 2 (d) is similar to Assumption G of Bai

(2003), and ensures the existence of the probability limits of the rotation matrices HF and Hη. As-

sumptions 3 and 5 allows for weak serial and cross-sectional correlation in the errors, corresponding
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to Assumptions C and E of Bai (2003). Assumption 4 is similar to Assumption D of Bai and Ng

(2004). Assumption 6 is not stringent because all of the sums involve zero mean random variables.

It is close to Assumption F of Bai (2003) and Assumption 6 of Han (2015). Assumption 7 are

central limit theorems which can be obtained under primitive assumptions, (e.g. Theorem 5.15 or

Theorem 7.1.2 of White, 1984; Brockwell and Davis, 1991, respectively). Assumption 8 formalises

the instrument relevance and exogeneity conditions with respect to contemporaneous shocks. Note

that ζt = A−1ηt implies E(ζt|Zt−1, Zt−2, . . . ) = 0, i.e. that the structural shock is uncorrelated with

lags of the instruments. This is consistent with the structural VAR literature, where the structural

shocks are interpreted as unanticipated, and therefore, unpredictable conditional on historical in-

formation. Similar to Stock and Watson (2018), we allow Zt to be correlated with lags of ζt, which

is a much looser condition than is required for a local projection (LP-IV) approach.

It is well known that the principal components estimator is only able to estimate the true factors

up to a rotational basis. Let X0 ≡ [X1, . . . , XT ]⊤ be the full data matrix. We define the following

normalisation bases for Ft and ηt

HF =
(

Λ⊤Λ
N

)(
F ⊤F̂

T

)
V̂ −1

F and (3.1)

Hη =
(

Θ⊤Θ
N

)(
η⊤η̂

T − p

)
V̂ −1

η (3.2)

where V̂F is an r × r diagonal matrix consisting of the first r largest eigenvalues of X0X0⊤/(NT )

in descending order, and V̂η is a q × q diagonal matrix consisting of the first q eigenvalues of

X̂X̂⊤/(N(T − p)) in descending order. Their corresponding probability limits are

H̄F = plim HF and (3.3)

H̄η = plim Hη, (3.4)

which can be shown by Lemma A3 and Proposition 1 of Bai (2003).

Analogously, we can define HF such that F̂ is a consistent estimator for H⊤
F Ft. Recall that

F̂t =
[
F̂ ⊤

t−1, . . . , F̂ ⊤
t−p

]⊤
and F =

[
F ⊤

t−1, . . . , F ⊤
t−p

]⊤
. It follows that the rotational basis HF can be
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defined as

HF ≡ Ip ⊗ HF (3.5)

so that F̂ is a consistent estimator for H⊤
F Ft. The probability limit of HF is

H̄F = Ip ⊗ H̄F . (3.6)

Remark. We focus on the setup where the static factors Ft are unobserved. If some of the factors

are treated as observed, then the model becomes a factor-augmented VAR (FAVAR) model, (e.g.

Bernanke et al., 2005; Bai et al., 2016). Specifically, in the FAVAR setup, F̂t can be constructed

by stacking the observed factors (regressors) and the estimated factors. Generally, the introduction

of observed factors results in 1
T

∑T
t=1 F̂tF̂

⊤
t no longer being an identity matrix; the corresponding

loading matrix should then be estimated by least squares as Λ̂ = X⊤F̂
(
F̂ ⊤F̂

)−1
. The rotational

basis HF then needs to be redefined as

I 0

0 Hu
F

 where the identity matrix is the same dimension

as the observed factors, and Hu
F is the normalisation basis for the unobserved factors defined in a

similar manner to Equation (3.1), i.e. HF is defined in a suitable way that keeps the observed factors

unchanged, but rotates the columns of the unobserved factors. Therefore, the theory developed in

this paper can also be applied to FAVAR models with some minor adjustments.

Remark. In addition, the Xt series that are used for factor estimation need not be identical to the

series whose impulse responses we are interested in. This can occur, for example, if a subset of

Xt corresponding to non-aggregate series is used to estimate the factors as is commonly done (e.g.

Stock and Watson, 2002, 2012, 2016). The corresponding loading matrix is still estimated by least

squares as Λ̂, and the theory developed in this paper remains applicable.
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3.2 Asymptotic Distribution of Structural Parameters

We begin by deriving the asymptotic distribution of δ̂, which is necessary to analyse â and, therefore,

the IRF. Let Sδ be the infeasible counterpart of S
δ̂
, i.e. a (q − 1) × q matrix such that

Sδη
∗
t = η∗

−1t − δη∗
1t, (3.7)

which by definition is equal to

Sδ =
[
δ

... Iq−1(1 : q − 1)
]

, (3.8)

where Iq−1(1 : q − 1) collects the last q − 1 matrix of Iq−1.

Theorem 1. Under Assumptions 1 to 8, and the conditions that WT
p→ W , and

√
T/N → 0 as

N, T → ∞,

a) δ̂ is a consistent estimator of δ, and

√
T
(
δ̂ − δ

)
d→
(
AWA⊤

)−1
AWN

(
0kq×1,

(
SδH̄

⊤
η ⊗ Ik

)
Σ(1)

i

(
SδH̄

⊤
η ⊗ Ik

)⊤
)

,

where A = Iq−1 ⊗ S1H̄
⊤
η E(η1tZ

⊤
t ), S1 = [1, 01×(q−1)], and Σ(1)

i is the upper left block of Σi.

b) The optimal choice of the weighting matrix is V −1
δ , where Vδ = CΣ(1)

i C⊤ and C =
[
SδH̄

⊤
η ⊗ Ik

]
.

c) V̂δ
p→ Vδ.

d)
√

T
(
δ̂o − δ

)
d→ N

(
0, [AV −1

δ A⊤]−1
)
.

Theorem 1 shows that δ̂ is consistent for δ and has a standard asymptotic normal distribution.

Theorems 1 (b) and 1 (c) show the form of the infeasible weight matrix and the consistency of the

feasible weight matrix, respectively. The use of the optimal weight matrix results in the optimal

two-step GMM estimator δ̂o in Theorem 1 (d), which follows from typical GMM arguments.
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3.3 Asymptotic Distributions of Impulse Response Functions

In this subsection, we present the asymptotic distributions of the estimators of the IRFs. The IRFs

are a function of â1, Λ̂, Ψ̂s, Ĝ and Θ̂. Because â1 =
(
1, δ̂⊤

)⊤
, the asymptotic properties of δ̂ in

Section 3.2 can be used by defining S̄1 as the last q − 1 columns of Iq, so that â − a∗ = S̄1

 0

δ̂ − δ

.

Thus, we derive the asymptotic representations of the remaining terms and then combine these

results to obtain the asymptotic distributions of the IRFs.

Proposition 1. Under Assumptions 1 to 6, Ĝ − H⊤
F GΣηHη = Op

(
1

δ2
NT

)
.

Proposition 2. Under Assumptions 1 to 6, if
√

T/N → 0 as N, T → ∞,

√
T
(
θ̂i − H−1

η θi

)
=
(
H−1

η G⊤HF

)√
T
(
λ̂i − H−1

F λi

)
+ op(1). (3.9)

Proposition 3. Under Assumptions 1 to 8, if
√

T/N → 0 as N, T → ∞,

a)

√
T


â1 − a∗

1

λ̂i − H−1
F λi

vec(Ψ̂⊤
s − H−1

F Ψ⊤
s HF )

 = Bs
1√
T


vec

(
Z⊤η − E(Z⊤η)

)
F ⊤ei

vec
(
F⊤η

)

+ op(1)

d→ N(0(q+r+r2)×1, BsΣiB
⊤
s ), (3.10)

where

Bs =


S̄1
(
AWA⊤

)−1
AW (SδH̄

⊤
η ⊗ Ik) 0q×r 0k×rpq

0r×qk H̄⊤
F 0r×rpq

0r2×qk 0r2×r R̄s

[
H̄F G ⊗

(
ΣFH̄F

)−1
]

 ,

R̄s =
s∑

j=1

(
H̄⊤

F Ψj−1H̄
−⊤
F ⊗

[
H̄−⊤

F Ψ⊤
s−jH̄F , H̄−⊤

F Ψ⊤
s−j−1H̄F , . . . , H̄−⊤

F Ψ⊤
s−j−p+1H̄F

])
,

Ψ0 = Ir,

Ψs = 0r×r for s < 0,
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b)

√
T

 â1 − a∗
1

λ̂i − H−1
F λi

 = B0
1√
T

vec
(
Z⊤η − E(Z⊤η)

)
F ⊤ei

+ op(1)

d→ N
(
0(q+r)×1, B0Σ(1)

i B⊤
0

)
,

where B0 =

S̄1
(
AWA⊤

)−1
AW

(
SδH̄

⊤
η ⊗ Ik

)
0q×r

0r×qk H̄⊤
F

.

Proposition 1 shows that
√

T
(
Ĝ − H⊤

F GΣηHη

)
has a degenerate limiting distribution if

√
T/N →

0, therefore Ĝ can be directly replaced by H⊤
F GΣηHη as if Ĝ is observed when N is large relative

to T . Proposition 2 is used for obtaining the asymptotic representations of the contemporaneous

impulse responses. Proposition 3 (a) implies the asymptotic distribution of the IRFs. Proposi-

tion 3 (b) is simply Proposition 3 (a) but without the effects of Ψ̂s, and is used for simplifying the

results for the contemporaneous IRFs. Theorem 1 and Propositions 1 to 3 together are applied to

obtain the asymptotic distributions of the dynamic IRFs over time, as summarised in the following

theorem.

Theorem 2. Under Assumptions 1 to 8, and the conditions that WT
p→ W , and

√
T/N → 0 as

N, T → ∞,

a) For the contemporaneous IRFs of Xit to ζ1t,

√
T
(
θ̂⊤

i â1 − θ⊤
i a1

)
=

√
TQ̄1,i

 â1 − a∗
1

λ̂i − H−1
F λi

+ op(1)

d→ N
(
0, Q̄1,iB0ΣiB

⊤
0 Q̄⊤

1,i

)
,

where Q̄1,i =
(
θ⊤

i H̄−⊤
η C1 + a1G

⊤H̄F C2
)
, C1 = [Iq

...0q×r], and C2 = [0r×q
...Ir].
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b) For the IRFs of Xit to ζ1,t−s, (s ≥ 1),

√
T
(
λ̂⊤

i Ψ̂sĜâ1 − λ⊤
i ΨsGa1

)
=

√
TQ̄2,i


â1 − a∗

1

λ̂i − H−1
F λi

vec
(
Ψ̂⊤

s − H−1
F ΨsHF

)

+ op(1)

d→ N(0, Q̄2,iBsΣiB
⊤
s Q̄⊤

2,i),

where

Q̄2,i = λ⊤
i ΨsGΣηH̄ηC3 + a⊤

1 G⊤Ψ⊤
s H̄F C4 +

(
λ⊤

i H̄−⊤
F ⊗ a⊤

1 G⊤H̄F

)
C5,

and C3 = [Iq
...0q×r

...0q×r2 ], C4 = [0r×q
...Ir

...0r×r2 ] and C5 = [0r2×q

...0r2×r

...Ir2 ].

Theorem 2 establishes the consistency and asymptotic normality of the dynamic IRFs. Note

that despite our estimator â1 recovering a∗
1 = H⊤

η a1 and therefore being subject to the effect of

the principal components rotation, our resulting estimators for the IRFs can consistently estimate

the true impulse responses without the effect of any rotations. Additionally, we do not need Hη

or HF to estimate their asymptotic variances. Hence, Theorem 2 is the main result necessary for

frequentist inference and construction of valid confidence intervals in empirical analysis. We discuss

practical implementation of the covariance matrices in the next subsection.

Remark. The structural factor model can also offer a way to test conventional identifying re-

strictions employed in SVAR models, such as short-run and long-run exclusion restrictions on the

impulse responses. It is straightforward to implement any tests for zero impulse responses using

Theorem 2. However, note that this approach does not establish a consistent estimator for A per

se; and hence simply gives some theoretical justification to the often ad-hoc practice of checking for

“reasonable” impulse responses often employed by the literature, (e.g. Bernanke et al., 2005).
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3.4 Covariance Matrix Estimation

We next detail feasible estimation of the covariance matrices for the IRFs in Theorem 2. First note

that the idiosyncratic errors can be consistently estimated as

êt = Xt − Λ̂F̂t, (3.11)

and let êit denote the ith element of êt. We define an estimator for Σi as

Σ̂i = 1
T − p

T∑
t=p+1

ξitξ
⊤
it , (3.12)

where

ξit =


vec

(
Z⊤

t η̂t − 1
T −p

(Z⊤η̂)
)

F̂ ⊤
t êit

vec
(
F̂⊤

t η̂t

)

 ,

and

R̂s =
s∑

j=1

(
Ψ̂j−1 ⊗

[
Ψ̂⊤

s−j, Ψ̂⊤
s−j−1, . . . , Ψ̂⊤

s−j−p+1

])

with Φ̂0 = Ir and Ψ̂s = 0r×r for s < 0. Similarly, an estimator for Σ(1)
i can be defined as

Σ̂(1)
i = 1

T − p

T∑
t=p+1

C6ξitξ
⊤
it C⊤

6 , (3.13)

where C6 =

 Iq 0q×r 0q×rpq

0r×qk Ir 0r×rpq

. When et is serially correlated, the HAC estimators for the

asymptotic variances can be readily constructed following the arguments of Bai (2003) and Han

and Inoue (2015); cross-sectional correlation in et can be additionally accommodated via a CS-HAC

estimator following Bai and Ng (2006) and Gonçalves and Perron (2020). Estimators for B0 and Bs

for s = 1, . . . , h follow by appropriate replacement of their unknown quantities with their feasible
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counterparts

B̂0 =

S̄1 (AT WT AT )−1 AT WT

(
S

δ̂
⊗ Ik

)
0q×r

0r×qk Ir

 (3.14)

B̂s =


S̄1 (AT WT AT )−1 AT WT

(
S

δ̂
⊗ Ik

)
0q×r 0q×rpq

0q×qk Ir 0r×rpq

0r2×qk 0r2×r R̂s

(
Ĝ ⊗

(
F̂⊤F̂
T −p

)−1
)

 . (3.15)

The constant matrices Q̄j,i for j = 1, 2 can be estimated by replacing the unknown parameters

with their consistent counterparts. Based on Theorems 1 and 2 and Propositions 1 to 3, we know

that θ̂i, λ̂i, Ψ̂s, Ĝ, and â1 consistently estimate H̄−⊤
η θi, H̄−1

F λi, H̄⊤
F ΨsH̄

−⊤
F , H̄⊤

F GΣηH̄η, and H̄⊤
η a1,

respectively. Hence, we propose the following estimators for the constant matrices

Q̂1,i =
[
θ̂⊤

i C1 + â1Ĝ
⊤C2

]
,

Q̂2,i =
[
λ̂⊤

i Ψ̂sĜC3 + â⊤
1 Ĝ⊤Ψ̂⊤

s C4 +
(
λ̂⊤

i ⊗ â⊤
1 Ĝ⊤

)
C5
]

.

3.5 Overidentification and Automatic Selection of External Instruments

A major advantage of the GMM-based framework that we adopt is the possibility of 1) testing the

joint validity of external instruments and 2) automatic selection of valid external instruments.

We first present the J-test for the joint validity of external instruments as

JT ≡ TQT (δ̂), (3.16)

where QT (δ̂) is the GMM-criterion function QT evaluated at δ̂ where the weight WT is chosen

optimally. We show that JT has a standard asymptotic χ2
(k−1)(q−1) distribution.

Following this definition of the J-test statistic, we then propose a series of instrument selection

criteria for automatic selection of valid instruments. Let c denote the instrument selection vector,

which takes values 0 or 1. The number of overidentifying restrictions is therefore (|c| − 1)(q − 1).
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Define the GMM-estimator using the instruments selected by c as

δ̂(c) = argmin
δ

QT (δ(c)) = argmin
δ

ḡT,c(δ)⊤WT (c)ḡT,c(δ), (3.17)

where ḡT,c(δ) and WT (c) are the empirical moments and their weight matrix, defined using only the

instruments selected by c. Thus, the corresponding JT (c) test can also be written as

JT (c) = T ḡT,c

(
δ̂(c)

)⊤
WT (c)ḡT,c

(
δ̂(c)

)
. (3.18)

We consider estimation of c0 the “correct” selection vector, using an estimator ĉ, which has pa-

rameter space C ∈ C. The space C contains c = 0, and is defined in terms of the selection of the

instruments in order to exploit the block structure implied by the moment conditions; that is, if

the first instrument is invalid, then this implies that all of the first q − 1 moment conditions are

also invalid.

Assumption 9. Define Z = {c ∈ C : c = c0(δ) for some δ}, the set of selection vectors in C which

select only moment conditions that are zero asymptotically, and MZ = {c ∈ Z : |c| ≥ |c∗|∀c∗ ∈ Z },

the set of selection vectors in Z that maximise the selected moments out of selection vectors in Z .

We require the following conditions:

a) MZ contains a single element c0.

b) ḡT,c(δ) has a unique solution δ.

Assumptions 9 (a) and 9 (b) correspond to Assumptions ICc0 and ICθ0 of Andrews (1999).

Assumption 9 (a) requires that the correct selection vector uniquely selects the maximal number of

moment conditions that equal zero asymptotically. Assumption 9 (b) specifies that δ is the “true”

value of δ. As we are in a standard GMM context, MZ = {1q−1} and thus both assumptions hold.

Similarly, we follow Andrews (1999) and propose a set of information criteria which can be

used to select for the correct set of moments (instruments). The GMM moment selection criterion
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chooses the vector in ĉGMMBIC
, ĉGMMAIC

, ĉGMMHQIC
in C which, respectively, minimise:

GMMBIC = J(c) − (|c| − 1)(q − 1)logT ;

GMMAIC = J(c) − 2(|c| − 1)(q − 1);

GMMHQIC = J(c) − Q(|c| − 1)(q − 1)loglogT,

for some Q > 2 (which we set to 2.01), and where (|c| − 1)(q − 1) is the number of identifying

restrictions.2 These criteria are the counterparts of the Bayesian Information Criteria, Akaike

Information Criteria, and Hannan-Quinn Information Criteria.

Downwards Testing

As an alternative, we next propose a downwards testing procedure that sequentially tests all combi-

nations of the external instruments and asymptotically yields the correct selection of instruments.3

As stated by Andrews (1999), this downwards testing procedure formalises the ad-hoc approaches

used by empirical researchers.

We describe the downwards testing procedure, which is based on the test statistic JT (c). Starting

with vectors c ∈ C for which |c| is the largest, we carry out tests with progressively smaller |c| until

we find a test that does not reject the null hypothesis; let k̂DT denote the value of |c| for the first

such test that does not reject. Given k̂DT , the downwards testing estimator of ĉDT is defined to

be the vector that minimises JT (c) over c ∈ C with |c| = k̂DT . The downwards testing moment

selection procedure thus progresses from the most to least restrictive model.

The consistency of the J-test, moment selection criteria, and downwards testing procedure are

summarised in the following theorem.

Theorem 3. Under Assumptions 1 to 8 and the condition that
√

T
N

→ 0 as N, T → ∞,

a) JT ≡ TQT (δ̂) d→ χ2
(k−1)(q−1),

b) Additionally under Assumption 9, for MSC ∈ {GMMBIC , GMMAIC , GMMHQIC}, ĉMSC =

c0 w.p.a. 1,
2Note that GMM − AIC is inconsistent.
3Note that the upwards testing procedure requires some extra assumptions, so we omit it for brevity.
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c) Additionally under Assumption 9, ĉDT = c0 w.p.a. 1.

Theorem 3 (a) follows from a standard application of Hansen’s J-test. The degrees of freedom

corresponds to the fact that each of the k instruments corresponds to (q − 1) moments, and only

k = 1 instrument is required to just identify a1. Theorem 3 (b) establishes that the model selection

criteria ĉGMMBIC
, ĉGMMAIC

, and ĉGMMHQIC
are consistent at determining when there are no over-

identifying restrictions. Theorem 3 (c) corresponds to Theorem 2 of Andrews (1999), and establishes

that the downwards testing estimator ĉDT is able to determine when there are no over-identifying

restrictions, similar to ĉMSC . In practice, over-rejection of the J test in finite samples tends to lead

to a higher probability of using only correct moments, but not necessarily all valid moments.

Remark. An upwards testing procedure can also be considered following Andrews (1999). However,

this requires an additional assumption on the parameter space C to ensure that it does not stop at

too small a value of |c|. In addition, although both the upwards and downwards testing procedure

are consistent, in finite sample the upwards testing procedure will always select fewer moments than

the downwards testing procedure if they do not agree. Thus, we focus on the model selection criteria

and downwards testing approaches.

4 Monte Carlo

4.1 Data Specification

The factor loadings λi are drawn from a multivariate normal distribution with mean 0r and covari-

ance matrix ΣΛ = Ir.4 The structural shocks ζt are drawn from N(0q, Iq).

Similar to Bai and Wang (2015), we specify a VAR process for the dynamic factors as

ft = ϕft−1 + Aζt, (4.1)

4The set of loadings λi is set to be a vector of ones, in order to ensure that the first impulse response function is
not too small, which can cause some numerical issues when implementing the unit effect normalisation.
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where ϕ = 0.7 and A =


1 0 0

1 1 0

1 0 1

. The static factors are stacked as Ft =
[
f⊤

t , f1,t−1, . . . , fr−q,t−1
]⊤

where r ≤ 2q in order to include some lags of ft as static factors. Equation (4.1) implies

Ft = Φ1Ft−1 + GAζt, (4.2)

where Φ =

 ϕIr 0q×(r−q)

I(r−q)×q 0(r−q)×(r−q)

 where I(r−q)×q denotes the first (r − q) rows of Iq, and GA =

 A

0(r−q)×q

. We set r = 5 and q = 3. The observable series are then generated as

Xt = ΛFt + et. (4.3)

To investigate the efficiency gains from overidentification and the size of the proposed J-test,

we generate the instrument Zjt that is correlated with the first structural shock at time t by

DGP 1 : Zjt =
√

1 − a2wjt + aζ1t + ζq,t−1, for j = 1, . . . , k = 4, (4.4)

where wjt are i.i.d. standard normal random variables, and a is set equal to
√

1/2/2 so that the

correlation between Zjt and ζ1t is equal to 0.25. We set the number of instruments as k = 1, . . . , 4

to investigate the benefits of overidentification.

To investigate the power of the overidentification test and consistency of the moment selection

procedures, we generate instruments as

DGP 2 : Zjt =
√

1 − a2wjt + aζ1t + ζq,t−1, for j = 1, 2,

Z3t =
√

1 − a2w3t + aζ2t + ζq,t−1,

Z4t =
√

1 − a2w4t + aζ3t + ζq,t−1, (4.5)

such that the first two instruments are only correlated with the structural shock of interest and
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hence valid, but the last two instruments are contaminated with the effects of other structural

shocks, and hence invalid. In either specification, the instruments are also correlated with the lags

of the qth structural shock. The number of replications is 1, 000.

With the observed data Xt, we estimate the static factors F̂ and loadings Λ̂. The MA coefficients

Ψ̂s are computed using the OLS estimate of Φ̂. The principal components-based estimates of the

reduced form shocks η̂t and the instruments are then used for the estimation of δ. We implement

two-step GMM estimation using the weighting matrix Iq ⊗
(

1
T

∑T
t=1 ZtZ

⊤
t

)−1
in the first step, then

re-estimate δ using the optimal weighting matrix V̂ −1 in the second step. The confidence intervals

for the structural IRFs are computed based on the asymptotic normal distribution in Theorem 2

and the proposed consistent estimators of the covariance matrices.

Additionally, for a point of comparison, we also identify and estimate the impulse response using

an SVAR-IV estimator using only the first four variables in Xt. The implementation of this follows

Cheng et al. (2021), the difference from the SFM approach being that the SVAR is estimated in

Xjt for j = 1, . . . , 4 directly, and the reduced form shocks estimated as the residuals of this system.

Note that because q = 3, this results in a singular VAR system.

4.2 Results

4.2.1 Efficiency Gains

Table 1 reports the finite-sample RMSEs of the estimated IRFs as measured by a ratio of each

overidentified scheme compared to the just-identified scheme using only one instrument. The RMSE

ratios are typically decreasing in k for the IRFs, with the effect being more pronounced at the

contemporaneous horizon and when N = T . This confirms that a more efficient estimate of a1 via

the use of more than one instrument can lead to efficiency gains for the IRFs at both zero and

non-zero horizons, and that our asymptotic theory is correct.

Table 2 reports the finite-sample coverage rates of the confidence intervals. In general, these

coverage rates are acceptable and close to the nominal level of 95%, particularly at the h = 3 horizon.

There is some evidence that the coverage ratios are slightly under-estimated for contemporaneous

horizons. This is a commonly encountered problem in the factor modelling literature (e.g. Yamamoto
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h = 0 h = 3

T N k = 2 k = 3 k = 4 SVAR-IV (k = 4) k = 2 k = 3 k = 4 SVAR-IV (k = 4)

125 0.945 0.926 0.919 1.962 1.001 1.007 1.008 1.625250
250 0.949 0.928 0.911 2.006 0.998 0.986 0.978 1.520

125 0.961 0.938 0.925 2.020 1.000 1.000 0.996 1.927500
250 0.961 0.948 0.936 2.063 1.001 1.004 1.003 1.823

Note:
Entries report the RMSE of the estimated IRFs of the overidentified system, compared to the RMSE of the
IRFs of the just-identified system.

Table 1: RMSE ratios

h = 0 h = 3

T N k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

125 0.919 0.897 0.889 0.881 0.954 0.949 0.947 0.944250
250 0.920 0.904 0.895 0.888 0.954 0.949 0.945 0.944

125 0.903 0.890 0.883 0.880 0.946 0.943 0.941 0.940500
250 0.909 0.898 0.892 0.889 0.948 0.945 0.943 0.942

Note:
Entries report the coverage probabilities of the IRFs using the proposed asymptotic
distributions (nominal 95%).

Table 2: Coverage Probabilities

and Hara, 2022), and is a finite-sample aberration that can be readily addressed by employing a

bootstrap procedure similar to that of Yamamoto (2019). We leave this issue for future research.

The effective coverage rates all improve at the sample size increases and particularly as N increases,

confirming our asymptotic theory.

Table 3 reports the finite-sample performance of the proposed J-test to test the null hypothesis

of joint instrument exogeneity. In general, the effect size of the proposed tests is acceptable for the

sample sizes considered in simulations.

4.2.2 Overidentification Test and Moment Selection

We investigate the results of the proposed overidentification and moment selection procedures,

which correspond to DGP 2. Tables 4 and 5 present the finite sample performance of the J-test for

joint exogeneity of the instruments and accuracy of the moment selection procedures, respectively,

under DGP 2. It can be seen that, across all specifications, the J-test has high power, and the

T N k = 2 k = 3 k = 4

125 0.046 0.034 0.035250
250 0.058 0.040 0.021

125 0.049 0.047 0.043500
250 0.039 0.035 0.039

Note:
Entries report the rejection frequencies
of the J-test (nominal size of 5%).

Table 3: Size of J-test
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T N Rejection Frequency

125 1.000250
250 1.000

125 1.000500
250 1.000

Note:
Entries report the rejection fre-
quency of J-test for overidentifica-
tion, with k = 4 instruments.

Table 4: Power of J-test

Information Criteria Testing

T N GMMBIC GMMAIC GMMHQIC DT UT

125 1.000 1.000 1.000 1.000 1.000250
250 1.000 1.000 1.000 1.000 1.000

125 1.000 1.000 1.000 1.000 1.000500
250 1.000 1.000 1.000 1.000 1.000

Note:
Entries report the frequencies of correct instrument selection. DT and UT
denote Downwards and Upwards Testing respectively. Correct instruments
are Z1 and Z2.

Table 5: Accuracy of Moment Selection Procedures

moment selection procedures are able to accurately select the correct instruments.

5 Empirical Application

5.1 Data and Instruments

We consider the dataset used by Stock and Watson (2012). This dataset consists of quarterly

observations from 1959Q1 - 2011Q2 on 200 U.S. macroeconomic time series, grouped into 13 cat-

egories and suitably transformed to induce stationarity. Of the 200 series available, we only use

the 132 disaggregated series to estimate the factors in order to avoid double counting high level

aggregates.5 We restrict our sample to 1980Q1 - 2007Q2; the start is dictated by the data avail-

ability of the instruments, while the end is chosen to avoid the onset of the Global Financial Crisis.

We focus on identifying and estimating the dynamic causal effect of a monetary policy shock with

the use of various monetary policy instruments. These include the narrative-based instrument of

Romer and Romer (2004) computed as the residual of a Fed monetary intentions measure on in-

ternal Fed forecasts,6 a model based instrument in the form of the monetary shocks identified from

the SVAR of Bernanke and Mihov (1998), and a collection of monetary surprises identified using
5See Stock and Watson (2012) for more details on data cleaning.
6We use an updated and extended version of the Romer and Romer (2004) shocks, as constructed by Wieland

and Yang (2020).
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high(er) frequency data: the changes in federal funds futures around policy announcements using

a daily window (Barakchian and Crowe, 2013), a 30-minute window (Gertler and Karadi, 2015),

and a 30-minute window with further cleaning of the surprises via a regression on more control

variables, (Miranda-Agrippino and Ricco, 2021). This selection of five instruments corresponds to

the instrument set used by Schlaak et al. (2023).7

5.2 Model Specification

We first estimate the number of factors in the dataset. The ICp(2) criterion of Bai and Ng (2002)

suggests r = 5 static factors, though the criteria are quite flat for 4 − 12 factors. As suggested by

Stock and Watson (2016), the sixth to twelfth factors can often help in explaining the majority of

variation in many important variables such as labour productivity, hourly compensation, the term

spread, and exchange rates. The first nine factors explain about 52.1% of the total variance in the

dataset; whereas the contributions of the 10th-12th factors only provide marginal gains totalling

6.79% additional explanatory power. As stated by Han (2015, 2018), it is important to set r high

enough such that the space spanned by the static factors can be fully recovered; at the same time,

setting r too high (usually more than nine factors) tends to introduce too much extra noise.8 We

therefore proceed with the choice of r = 9 static factors for our benchmark model. We fit a VAR(2)

process to model the dynamics of Ft, corresponding to p = 2 lags in our benchmark analysis, as

supported by the BIC. The criterion of Bai and Ng (2007) tends to detect three dynamic factors;

we thus set q = 3 factors in our benchmark model.

We proceed with the identification of the monetary policy shock by implementing the proposed

estimators with all five available instruments.
7We do not consider combining the instruments by taking their first eigenvector, as our generalised method-of-

moments framework already achieves this in a data-driven manner.
8The procedures of Onatski (2010) and Ahn and Horenstein (2013) tend to estimate r = 1 factors, which as noted

Forni and Gambetti (2014) is at odds with most macroeconomic theory and the theoretical premise of the SVAR
literature.

30



5.3 Results

Dynamic Causal Effects of Monetary Policy Shocks

We present the results of our benchmark model. Figure 1 shows the cumulative impulse responses

of various macroeconomic variables to a standard deviation monetary contraction in the Federal

Funds rate as identified, using the benchmark model with all instruments. Although most impulse

responses are not statistically significant from zero, it is remarkable that most of the point estimates

are consistent with economic theory and the consensus as documented by Christiano et al. (1998).

Economic activity as measured by industrial production declines immediately, with the response

bottoming after one year. Falls are also evident in earnings, employment, and money variables. The

unemployment rate is estimated to increase after a contractionary monetary policy shock, with a

persistent effect.

Note that there is a persistent, though generally statistically insignificant puzzle evident. In

contrast, Figure 2 presents the cumulative IRFs after a contractionary monetary policy as (just)

identified by using each instrument one at a time, in comparison with the benchmark overidentified

model. Note that the impulse responses as identified by the Bernanke and Mihov (1998) model-

based instrument are omitted due to scaling issues. It is remarkable that although almost all

impulse responses from these just identified schemes lie within the 95% confidence interval of the

overidentified case, each of them produces responses that are less efficient and/or more puzzling.

For example, the narrative-based instrument of Romer and Romer (2004) produces responses

with the correct signs for series such as earnings, housing starts, industrial production, and em-

ployment. However, it is also prone to producing greatly puzzling behaviour in prices, exchange

rates, and the S&P500. Next, the model-based instrument of Bernanke and Mihov (1998) identifies

a contemporaneous response of the Federal Funds Rate to a monetary policy shock to be near zero.

Such a result poses significant numerical problems when imposing the unit-effect normalisation and

causes significant scaling issues; this result is additionally highly incompatible with macroeconomic

theory. We therefore believe that the impulse responses as identified by this model-based measure

to be untenable in any practical sense. Finally, the high frequency-based instruments of Barakchian

and Crowe (2013); Gertler and Karadi (2015); Miranda-Agrippino and Ricco (2021) are much more
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Figure 1: Cumulative IRFs after a contractionary monetary policy shock for the over-identified
benchmark, normalised to a 100 basis point movement in the Federal Funds rate.

prone to producing puzzling responses. In particular, all high frequency instruments produce puz-

zling responses in the key variables of earnings, orders, employment, inventories, consumer credit,

and crucially industrial production. Although these responses are not statistically significantly

different from zero, the point estimates are still broadly incompatible with the macroeconomic con-

sensus as summarised by Christiano et al. (1998). On the other hand, we find that high frequency

instruments tend to alleviate, and, in some cases, eliminate price puzzles altogether. Of these, it

is noteworthy that the Gertler and Karadi (2015) instrument tends to produce the largest puzzles

in real activity and prices, a phenomenon that Miranda-Agrippino and Ricco (2021) attribute to

omitted information effects and alleviate via their instrument. These results are not entirely surpris-

ing; as noted by Ramey (2016), these popular instrument variables are unstable and can produce

puzzling responses to prices and real variables.
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Identification All Barakchian and Crowe (2013) Gertler and Karadi (2015) Miranda−Agrippino and Rossi (2021) Romer and Romer (2004)

Figure 2: Cumulative IRFs after a contractionary monetary policy shock for the over-identified
benchmark (solid curve), and just identified setups each using one instrument at a time, normalised
to a 100 basis point movement in the Federal Funds rate.

Evidently, the responses identified by each instrument have their distinct advantages and dis-

advantages, which, in practice, make economic reconciliation difficult. Thus, the comparison in

Figure 2 shows that the proposed overidentification scheme is able to automatically leverage the

respective advantages of each instrument, and produce, overall, more reasonable responses.

Which Monetary Policy Instruments are Valid?

Testing the exogeneity and therefore validity of the instruments has so far been largely unresolved

in the literature, but can be addressed with the J-test and automatic moment selection criteria we

propose. Table 6 presents the results of J-test for joint exogeneity of instruments and automatic

moment selection criteria. Across all overidentified specifications, we fail to reject the J-test. Cor-

respondingly, all three model selection criteria are minimised when all five instruments are used;
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the downwards testing estimator consequently selects all five instruments.
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GMMBIC GMMHQIC JT Jcrit RR04 GK15 MR21 BM98 BK13

-8.573 -5.502 0.638 5.991 TRUE TRUE FALSE FALSE FALSE
-8.824 -5.753 0.386 5.991 TRUE FALSE TRUE FALSE FALSE
-8.836 -5.765 0.375 5.991 FALSE TRUE TRUE FALSE FALSE

-15.285 -9.143 3.135 9.488 TRUE TRUE TRUE FALSE FALSE
-9.200 -6.129 0.011 5.991 TRUE FALSE FALSE TRUE FALSE

-8.760 -5.689 0.451 5.991 FALSE TRUE FALSE TRUE FALSE
-17.766 -11.623 0.655 9.488 TRUE TRUE FALSE TRUE FALSE
-8.878 -5.807 0.333 5.991 FALSE FALSE TRUE TRUE FALSE

-18.035 -11.893 0.386 9.488 TRUE FALSE TRUE TRUE FALSE
-15.953 -9.810 2.468 9.488 FALSE TRUE TRUE TRUE FALSE

-23.846 -14.633 3.785 12.592 TRUE TRUE TRUE TRUE FALSE
-4.998 -1.927 4.212 5.991 TRUE FALSE FALSE FALSE TRUE
-5.783 -2.712 3.427 5.991 FALSE TRUE FALSE FALSE TRUE

-14.073 -7.930 4.348 9.488 TRUE TRUE FALSE FALSE TRUE
-8.450 -5.379 0.761 5.991 FALSE FALSE TRUE FALSE TRUE

-13.764 -7.622 4.656 9.488 TRUE FALSE TRUE FALSE TRUE
-14.377 -8.235 4.043 9.488 FALSE TRUE TRUE FALSE TRUE
-20.511 -11.298 7.120 12.592 TRUE TRUE TRUE FALSE TRUE
-5.826 -2.754 3.385 5.991 FALSE FALSE FALSE TRUE TRUE

-14.060 -7.918 4.360 9.488 TRUE FALSE FALSE TRUE TRUE

-14.155 -8.012 4.266 9.488 FALSE TRUE FALSE TRUE TRUE
-23.035 -13.822 4.596 12.592 TRUE TRUE FALSE TRUE TRUE
-14.780 -8.637 3.641 9.488 FALSE FALSE TRUE TRUE TRUE
-23.044 -13.830 4.587 12.592 TRUE FALSE TRUE TRUE TRUE
-21.320 -12.107 6.311 12.592 FALSE TRUE TRUE TRUE TRUE

-28.955 -16.670 7.887 15.507 TRUE TRUE TRUE TRUE TRUE

Note:
RR04, GK15, MR21, BM98, and BC13 refer to the external instruments of Romer and Romer (2004),
Gertler and Karadi (2015), Miranda-Agrippino and Rossi (2021), Bernanke and Mihov (1998), and
Barakchian and Crowe (2013)

Table 6: Results of J-test for Overidentification and GMMMSC Criteria.
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Is Using More Instruments Better?

Given the evidence that all monetary policy instruments are jointly valid, we next investigate the

efficiency gains from using more than one instrument. We do this by estimating and comparing the

asymptotic variances of the IRFs. Table 7 reports the ratios of the asymptotic standard deviations

of the estimated IRFs under the just-identified IRFs obtained by using one instrument compared

to the benchmark model overidentified using all instruments; a ratio greater than one means that

the overidentified model provides a more efficient estimate. Not all ratios are greater than one, so

we additionally compute the means of the ratios to see if overidentification can lead to efficiency

gains on average. On average, the benchmark model that uses all instruments tends to produce

more efficient estimated for both zero and nonzero horizons compared to all instruments, with the

notable exception of Gertler and Karadi (2015). However, although the relative efficiency of the

responses of this instrument are on average lower, its behaviour can be quite erratic across different

horizons even for the same variable. Therefore, we conclude that the overidentified scheme provides

an ideal trade-off between producing the most reasonable impulse responses, and efficiency.
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h

Instrument Series 0 1 2 3 4

IP: Total index 13.469 15.811 12.019 10.952 8.082
Commod: Spot Price 2.192 12.585 7.305 2.023 3.937
CPI 6.216 6.830 2.954 3.994 3.918
FedFunds 7.750 14.087 13.601 14.745 14.167
S&P 500 11.052 5.487 2.460 3.784 2.429
Ex rate: Japan 1.301 9.709 5.268 11.549 13.178
Consumption 11.975 5.316 2.344 4.717 1.762

Barakchian and Crowe (2013)

Mean 7.553 8.720 7.585 7.201 8.007

IP: Total index 27.201 26.339 21.741 25.927 21.605
Commod: Spot Price 32.133 22.162 18.692 21.629 19.736
CPI 20.598 18.303 21.087 17.794 14.360
FedFunds 28.214 23.022 22.871 22.970 22.277
S&P 500 26.318 14.397 38.714 15.720 22.038
Ex rate: Japan 22.969 18.982 31.212 21.465 22.962
Consumption 21.169 15.815 15.703 14.187 12.970

Bernanke and Mihov (1998)

Mean 22.756 20.545 21.151 19.861 19.043

IP: Total index 1.048 1.012 0.815 1.355 0.990
Commod: Spot Price 1.495 1.112 0.708 0.940 0.895
CPI 0.529 0.653 0.826 0.620 0.530
FedFunds 0.937 0.982 0.952 1.011 1.141
S&P 500 1.473 0.606 1.780 0.645 0.844
Ex rate: Japan 1.027 0.693 1.312 0.759 0.840
Consumption 0.901 0.578 0.703 0.574 0.555

Gertler and Karadi (2015)

Mean 0.925 0.835 0.837 0.827 0.811

IP: Total index 5.555 2.558 2.057 12.454 8.651
Commod: Spot Price 15.735 8.226 3.382 9.605 6.929
CPI 3.589 3.379 7.183 5.169 2.358
FedFunds 8.710 2.295 2.349 4.850 6.428
S&P 500 13.762 1.413 19.213 4.447 8.660
Ex rate: Japan 10.731 1.790 12.743 2.236 2.181
Consumption 3.248 2.834 5.699 2.977 1.641

Miranda-Agrippino and Rossi (2021)

Mean 6.720 4.188 5.039 5.385 4.288

IP: Total index 3.501 3.458 2.974 3.350 2.889
Commod: Spot Price 3.748 2.708 2.813 2.733 2.617
CPI 2.374 2.507 2.605 2.542 2.227
FedFunds 3.143 3.111 3.161 3.080 3.143
S&P 500 3.325 2.234 4.387 2.499 2.535
Ex rate: Japan 3.117 2.443 3.512 2.621 3.075
Consumption 3.105 2.249 2.553 2.277 2.063

Romer and Romer (2004)

Mean 2.956 2.765 2.821 2.733 2.638

Table 7: Ratios of Asymptotic Standard Deviations of Estimated Impulse Response Functions:
Just Identified / Over-identified.

37



6 Conclusion

This paper develops new estimators for the impulse response functions in structural factor models

under overidentifying restrictions by using multiple external instruments. Compared with a typi-

cal SVAR-IV approach, our framework is able to simultaneously address the challenging issues of

nonfundamentalness, covariance singularity, and validity testing of identification restrictions, any

of which can prevent the practitioner from recovering the true impulse responses. We establish the

asymptotic distributions of the new estimators, and develop test statistics for the joint validity of in-

struments, and a downwards testing procedure which automatically selects the correct instruments.

Our simulation study confirms that the estimated impulse response functions are more accurate

than structural factor models that only use one instrument at a time, and the pre-existing SVAR-

IV approach, as well as the finite sample properties of the proposed validity tests and moment

selection criteria. We apply the framework to identify and estimate the impacts of a contractionary

monetary policy shock on a large quarterly U.S. macroeconomic dataset using five commonly used

instruments, including narrative-based measures, model-based measures, and monetary surprises

identified with high(er) frequency data. We find that, although all of these instruments are jointly

valid, using these instruments one by one as is commonly done in the literature can nevertheless pro-

duce puzzling and highly inaccurate responses. Instead, our proposed framework that jointly uses

all instruments is able to produce responses which are overall more reasonable, and more accurate.
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A Proofs

A.1 Preliminary

Lemma 1. Under Assumptions 1 to 4,

a) 1
T

∥∥∥F̂t − H⊤
F Ft

∥∥∥2
= Op

(
1

δ2
NT

)
and 1

T

∥∥∥F̂f − H⊤
F Ft

∥∥∥2
= Op

(
1

δ2
NT

)
.
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b) V̂F
p→ VF , where VF is the diagonal matrix consisting of the eigenvalues of ΣF ΣΛ in descending

order.

c) HF and HF are Op (1) and nonsingular.

Proof of Lemma 1.

a) The first equation is the same as Lemma A1 of Bai (2003). The second equation holds by

definition of HF and the first equation.

b) This is Lemma A3 of Bai (2003).

c) ∥HF ∥ ≤
∥∥∥∥ F̂ ⊤F̂

T

∥∥∥∥ 1
2 ∥∥∥F ⊤F

T

∥∥∥ 1
2
∥∥∥Λ⊤Λ

N

∥∥∥∥∥∥V −1
F

∥∥∥ = Op (1) by Assumptions 1 and 2 and Lemma 1. The

matrices HF and HF are nonsingular by Lemma A2 of Han and Inoue (2015).

■

Lemma 2. Under Assumptions 1 to 6,

a) 1
T

∑T
t=1(F̂t − H⊤

F Ft)[F ⊤
t , eit, η⊤

t ] = Op

(
1

δ2
NT

)
for i = 1, . . . , N ,

b) 1
T

(F̂ − FHF)⊤
[
F ...η

]
= Op

(
1

δ2
NT

)
.

Proof of Lemma 2.

a) Lemmas B.1 and B.2 of Bai (2003) imply 1
T

∑T
t=1(F̂t − H⊤

F Ft)(F ⊤
t , eit) = Op

(
1

δ2
NT

)
for i =

1, . . . , N . Lemma 2 a) of Han (2018) shows that 1
T

∑T
t=1(F̂t − H⊤

F Ft)η⊤
t = Op

(
1

δ2
NT

)
.

b) This is the same as Lemma 2 b) of Han (2018).

■

Lemma 3. Under Assumptions 1 to 6, 1
T

∑T
t=p+1

∥∥∥η̂t − H⊤
η ηt

∥∥∥2
= Op

(
1

δ2
NT

)
.

Proof of Lemma 3. Let S1 = ηΘ⊤ + e, S2 = −PF̂(ηΘ⊤ + e) + MF̂FΠ⊤, S1t be the transpose of the

tth row of S1 and S2t be the transpose of the tth row of S2. By eigen-identity, we have

η̂ − ηHη = 1
TN

(
ηΘ⊤e⊤ + eΘη⊤ + ee⊤ + S1S

⊤
2 + S2S

⊤
1 + S2S2

)
η̂V̂ −1

η (A.1)
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where V̂η denotes the diagonal matrix consisting of the first q eigenvalues of X̂X̂⊤/NT in descending

order. Hence, we obtain

η̂t − H⊤
η ηt = 1

TN
V̂ −1

η η̂⊤
(
eet + ηΘ⊤et + eΘηt + S2S1t + S1S2t + S2S2t

)
. (A.2)

It is sufficient to show that

1
T

∥clt∥2 = Op

(
1

δ2
NT

)
for l = 1, . . . , 4,

1
T

T∑
t=1

∥∥∥∥ 1
TN

η̂⊤S2S1t

∥∥∥∥2
= Op

(
1

δ2
NT

)
,

1
T

T∑
t=1

∥∥∥∥ 1
TN

η̂⊤S1S2t

∥∥∥∥2
= Op

(
1

δ2
NT

)
, and

1
T

T∑
t=1

∥∥∥∥ 1
TN

η̂⊤S2S2t

∥∥∥∥2
= Op

(
1

δ2
NT

)
.

The proof of 1
T

∑T
t=1 ∥clt∥2 = Op

(
1

δ2
NT

)
is the same as the proof of Theorem 1 in Bai and Ng (2002).

Note that, since F̂⊤X̂ = 0, F̂⊤η̂ = 1
T N

F̂⊤X̂X̂⊤η̂V̂ −1
η = 0, implying that η̂⊤PF̂ = 0 and

η̂⊤MF̂ = η̂⊤.

We have the following identities for the terms 1
T N

η̂⊤S2S1t, 1
T N

η̂⊤S1S2t, and 1
T N

η̂⊤S2S2t:

1
TN

η̂⊤S2S1t = 1
TN

η̂⊤
[
−PF̂

(
ηΘ⊤ + e

)
+ MF̂FΠ⊤

]
(Θηt + et)

= 1
TN

η̂⊤FΠ⊤Θηt + 1
TN

η̂⊤FΠ⊤et

= c5t + c6t,

1
TN

η̂⊤S1S2t = 1
TN

η̂⊤
(
ηΘ⊤ + e

) [
−
(
Θη⊤ + e⊤

)
F̂
(
F̂⊤F̂

)−1
F̂t + Π

(
Ft − F⊤F̂

(
F̂⊤F̂

)−1
F̂t

)]
= c7t + c8t + c9t + c10t + c11t + c12t,
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where

c7t = − 1
TN

η̂⊤ηΘ⊤Θη⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c8t = − 1
TN

η̂⊤ηΘ⊤e⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c9t = 1
TN

η̂⊤ηΘ⊤Π
[
Ft − F̂

(
F̂⊤F̂

)−1
F̂t

]
,

c10t = − 1
TN

η̂⊤eΘη⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c11t = − 1
TN

η̂⊤ee⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c12t = 1
TN

η̂⊤eΠ
[
Ft − F̂

(
F̂⊤F̂

)−1
F̂t

]
,

1
TN

η̂⊤S2S2t = 1
TN

η̂⊤FΠ⊤
[
−
(
Θη⊤ + e⊤

)
F̂
(
F̂⊤F̂

)−1
F̂t + Π

(
Ft − F̂

(
F̂⊤F̂

)−1
F̂t

)]
= c13t + c14t + c15t

c13t = − 1
TN

η̂⊤FΠ⊤Θη⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c14t = − 1
TN

η̂⊤FΠ⊤e⊤F̂
(
F̂⊤F̂

)−1
F̂t,

c15t = 1
TN

η̂⊤FΠ⊤Π
[
Ft − F̂

(
F̂⊤F̂

)−1
F̂t

]
.

Han (2018) proves that 1
T

∑T
t=1 ∥clt∥2 = Op

(
1

δ2
NT

)
for l = 5, . . . , 15. These quantities are used in

subsequent proofs, so are provided here for convenience. ■

Lemma 4. Under Assumptions 1 to 6,

a) 1
T

(η̂ − ηHη)⊤η = Op

(
1

δ2
NT

)
,

b) 1
T

(η̂ − ηHη)⊤Z = Op

(
1

δ2
NT

)
, and

c) H⊤
η = H−1

η Σ−1
η + Op

(
1

δ2
NT

)
.

Lemma 5. Under Assumptions 1 to 6, 1
T

∑T
t=1 ∥clt∥2 = Op

(
1

δ2
NT

)
for l = 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14

and 15 where each clt are defined in the proof of Lemma 3.

Proof of Lemma 4. Recall that η̂t − H⊤
η ηt = V̂ −1

η

∑15
l=1 clt, so it suffices to prove that 1

T

∑T
t=1 cltηt =

Op

(
1

δ2
NT

)
for Lemma 4 (a) and 1

T

∑T
t=1 cltZt = Op

(
1

δ2
NT

)
for Lemma 4 (b), where l = 1, . . . , 15.
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Lemma 4 (a) has been proven by Han (2018), so we focus on Lemma 4 (b), which can be proven

similarly. By the CS-inequality, for l = 1, 2, 3, 4, 5, 8, 10 − 15, we have

∥∥∥∥∥ 1
T

T∑
t=1

cltZ
⊤
t

∥∥∥∥∥ ≤
(

T∑
t=1

∥clt∥2 1
T

T∑
t=1

∥Zt∥2
)1/2

= Op

(
1

δ2
NT

)
, (A.3)

where 1
T

∑T
t=1 ∥clt∥2 = Op

(
1

δ2
NT

)
for l = 1, 2, 3, 4, 5, 6, 8, 10 − 15 by Lemma 5. Thus, it remains to

prove that 1
T

∑T
t=1 cltZ

⊤
t = Op

(
1

δ2
NT

)
for l = 3, 7, 9.

The term 1
T

∑T
t=1 c3tZ

⊤
t can be bounded by 1

T N
η̂⊤ηΘ⊤et

∥∥∥∥∥ 1
T

T∑
t=1

cltZ
⊤
t

∥∥∥∥∥ ≤
∥∥∥∥ 1

T
η̂⊤η

∥∥∥∥
∥∥∥∥∥ 1

TN

T∑
t=1

G⊤ΛetZ
⊤
t

∥∥∥∥∥
≤
∥∥∥∥ 1

T
η̂⊤η

∥∥∥∥∥G∥
∥∥∥∥∥ 1

TN

T∑
t=1

N∑
k=1

λkektZ
⊤
t

∥∥∥∥∥ = Op

( 1
TN

)
.

Next, the term 1
T

∑T
t=1 c7tZ

⊤
t can be rewritten as

1
T

T∑
t=1

c7tZ
⊤
t = − η̂⊤η

TN

Θ⊤Θ
N

η⊤F̂
T

(
F̂⊤F̂

T

)−1 1
T

T∑
t=1

F̂tZ
⊤
t

= Op

( 1
δNT

) 1
T

T∑
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F̂tZ
⊤
t

= Op

(
1

δ2
NT

)
.

Finally, the term 1
T

∑T
t=1 c9tZ

⊤
t can be expressed as

η̂⊤η

T

Θ⊤Π
N

1
T

T∑
t=1

[
Ft − F⊤F̂

(
F̂⊤F̂

)−1
F̂t

]
Z⊤

t

=Op (1) 1
T

T∑
t=1

H−⊤
F

(
H⊤

F Ft − F̂t

)
Z⊤

t + Op (1) H−⊤
F

(
F̂⊤ − H⊤

F F⊤
)

F̂
T

(
F̂⊤F̂

T

)−1 1
T

T∑
t=1

F̂tZ
⊤
t

=Op

(
1

δ2
NT

)
.

■
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Proof of Lemma 4 (c). Lemmas 4 (a) and 3 imply that

η̂⊤η̂ − H⊤
η η⊤ηHη

T − p
=

(η̂ − ηHη)⊤ (η̂ − ηHη) + (η̂ − ηHη)⊤ ηHη + H⊤
η η⊤ (η̂ − ηHη)

T − p

= Op

(
1

δ2
NT

)
.

Thus,

(
η̂⊤η̂ − H⊤

η η⊤ηHη

)
T − p

= Iq −
H⊤

η η⊤ηHη

T − p

= Op

(
1

δ2
NT

)
.

Next, η⊤η/(T − p) = Ση by Assumption 8, which means

H⊤
η = H−1

η Σ−1
η + Op

(
1

δ2
NT

)
.

■

A.2 Main Proofs

Proof of Theorem 1. Applying the formula for δ̂, we have

√
T
(
δ̂ − δ

)
=
(
AT WT A⊤

T

)−1
AT WT GT −

√
Tδ

=
(
AT WT A⊤

T

)−1
AT WT B
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where

AT = Iq−1 ⊗

 1
T − p

T∑
t=p+1

η̂1tZ
⊤
t

 ,

B = 1√
T

 T∑
t=p+1

η̂−1t ⊗ Zt −
(

Iq−1 ⊗
T∑

t=1
Ztη̂1tδ

)
= 1√

T

T∑
t=p+1

(η̂−1t − δη̂1t) ⊗ Zt

= 1√
T

T∑
t=p+1

(Sδη̂) ⊗ (Zt − µZ) .

We need to study the asymptotic distributions of AT and B. For B, decompose it into B = B1 + B2,

where

B1 = 1√
T

T∑
t=1

(
SδH

⊤
η ηt

)
⊗ (Zt − µZ) ,

B2 = 1√
T

T∑
t=1

[
Sδ

(
η̂t − H⊤

η ηt

)]
⊗ (Zt − µZ) .

For B1, note that E
[
SδH

⊤
η ηt ⊗ (Zt − µZ)

]
= 0 following the moment condition for the estimation

of δ and E(H⊤
η ηt) = H⊤

η E(ηt) = 0. It follows that

B1 = 1√
T

T∑
t=p+1

{(
SδH

⊤
η ηt

)
⊗ (Zt − µZ) − E

[(
SδH

⊤
η ηt

)
⊗ (Zt − µZ)

]}

=
(
SδH

⊤
η ⊗ Ik

) 1√
T

T∑
t=p+1

ηt ⊗ (Zt − µZ) − E [ηt ⊗ (Zt − µZ)]


=
(
SδH

⊤
η ⊗ Ik

) 1√
T

vec
(
Z⊤η − E(Z⊤η)

)
d→ N

(
0kq×1,

(
SδH̄

⊤
η ⊗ Ik

)
Σ(1)

i

(
SδH̄

⊤
η ⊗ Ik

)⊤
)

.
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To study B2, rewrite it as

B2 = 1√
T

T∑
t=p+1

[
Sδ

(
η̂t − H⊤

η ηt

)]
⊗ (Zt − µZ) vec (1)

= 1√
T

T∑
t=p+1

vec
(

(Zt − µZ)
(
η̂t − H⊤

η ηt

)⊤
Sδ

)

= vec
(

1√
T

(Z − µZ)⊤ (η̂ − ηHη)Sδ

)

= Op

(√
T

δ2
NT

)
, (A.4)

where the last equality follows because 1
T

Z⊤ (η̂ − ηHη) = Op

(
1

δ2
NT

)
. Therefore, B2 is asymptotically

negligible.

To study the limit of AT , we have

1
T − p

T∑
t=p+1

η̂1tZ
⊤
t = 1

T − p

T∑
t=p+1

(H⊤
η η)1tZ

⊤
t + 1

T − p

T∑
t=p+1

(
η̂1t − (H⊤

η η)1t

)
Z⊤

t

p→ E(S1H
⊤
η ηtZ

⊤
t ),

where S1 = [1, 01×(q−1)], and 1
T −p

∑T
t=p+1

(
η̂1t − (H⊤

η η)1t

)
Z⊤

t

p→ 0 using similar arguments used in

the proof of B2. Therefore,

AT
p→ A = Iq−1 ⊗ S1H̄

⊤
η E(ηtZ

⊤
t ). (A.5)

The weighting matrix W is a full rank matrix and thus invertible. The optimal choice of the

weighting matrix follows from standard arguments for GMM estimators.

Collecting the results yields the following distribution as required:

√
T
(
δ̂ − δ

)
p→
(
AWA⊤

)−1
AWB1

d→
(
AWA⊤

)−1
AWN

(
0kq×1,

(
SδH̄

⊤
η ⊗ Ik

)
Σ(1)

i

(
SδH̄

⊤
η ⊗ Ik

)⊤
)

,

where A = Iq−1 ⊗ S1H
⊤
η E(ηtZ

⊤
t ), and Σ(1)

i is the upper left block of Σi. ■
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Proof of Proposition 1. By definition,

Ĝ = 1
T − p

T∑
t=p+1

F̂tη̂t

= 1
T − p

T∑
t=p+1

H⊤
F Ftη̂t + 1

T − p

T∑
t=p+1

(
F̂t − H⊤

F Ft

) (
η̂t − H⊤

η ηt

)⊤

+ 1
T − p
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(F̂t − H⊤
F Ft)η⊤

t Hη

= 1
T − p
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(
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F ΦH−⊤
F HFFt−1η̂t + H⊤

F Gηtη̂t

)
+ Op

(
1

δ2
NT

)

= 1
T − p

T∑
t=p+1

(
H⊤

F ΦH−⊤
F HFFt−1η̂t + H⊤

F Gηtη
⊤
t Hη

)
+ Op

(
1

δ2
NT

)
. (A.6)

Recall that η⊤η/(T − p) p→ Ση. By the fact that F̂⊤η̂ = 0, we have

Ĝ − H⊤
F GΣηHη = 1

T − p
H⊤

F ΦH−⊤
F

(
FHF − F̂

)⊤
+ Op

(
1

δ2
NT

)

=
H⊤

F ΦH−⊤
F

[
(FHF − F̂)⊤(η̂ − ηHη) + (FHF − F̂)⊤ηHη

]
T − p

= Op

(
1

δ2
NT

)
.

■

Proof of Proposition 2. Recall that θ̂i = Ĝ⊤λ̂i. Therefore,

√
T θ̂i =

√
T
(
HηΣηG⊤H⊤

F λ̂i

)
+ Op

(√
T

δ2
NT

)

=
(
HηΣηG⊤HF H−1

F λi

)
+
(
HηΣηG⊤HF

)√
T
(
λ̂i − H−1

F λi

)
+ Op

(√
T

δ2
NT

)
√

T
(
θ̂i − H−1

η θi

)
=
(
H−1

η G⊤HF

)√
T
(
λ̂i − H−1

F λi

)
+ Op

(√
T

δ2
NT

)
.

■

Proof of Proposition 3 (a).
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For the estimator â1, its distribution is based on the distribution of δ̂. By definition, we have

√
T (â − a∗

1) =
√

T S̄1

 0

δ̂ − δ


p→ S̄1

(
AWA⊤

)−1
AW(SδH̄

⊤
η ⊗ Ik) 1√

T
vec

(
Z⊤η − E(Z⊤η)

)
,

which follows from Theorem 1 (a).

For the OLS estimator of the factor loadings λ̂i, Bai (2003) shows that

λ̂i − H−1
F λi = 1

T
H̄⊤

F F ⊤ei + Op

(
1

δ2
NT

)
. (A.7)

For the estimators Φ̂ and Ψ̂, Han (2018) shows that

√
T vec

(
Φ̂⊤ − H−1

F Φ⊤HF

)
=
H⊤

F G ⊗
(

H⊤
F F⊤FHF

T − p

)−1

H⊤
F

×
√

T
∑T

t=p+1 vec(F⊤
t ηt)

T − p

+ Op

(√
T

δ2
NT

)
,

√
T vec

(
Ψ̂⊤

s − H−1
F Ψ⊤

s HF

)
= Rs

√
T vec

(
Φ̂⊤ − H−1

F Φ⊤HF

)
+ op(1), (A.8)

where R̄s = ∑s
j=1

(
H̄⊤

F Ψj−1H̄
−⊤
F ⊗

[
H̄−⊤

F Ψ⊤
s−jH̄F , H̄−⊤

F Ψ⊤
s−j−1H̄F , . . . , H̄−⊤

F Ψ⊤
s−j−p+1H̄F

])
with Ψ0 =

Ir and Ψs = 0r×r for s < 0, which follows by (11.7.1) to (11.7.5) of Hamilton (2020).

Combining the above gives

√
T


â1 − a∗

1

λ̂i − H−1
F λi

vec
(
Ψ̂⊤ − H−1

F Ψ⊤HF

)

 = Bs
1√
T


vec

(
Z⊤η − E(Z⊤η)

)
F ⊤ei

vec(F⊤η)

+ op(1).

■

Proof of Proposition 3 (b). This is directly implied by Proposition 3 (a). ■
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Proof of Theorem 2 (a). By adding and subtracting terms, we have

√
T
(
θ̂⊤

i â1 − θia1
)

=
√

T θ̂⊤
i

(
â − H⊤

η a1
)

+
√

T
(
θ̂⊤

i − θ⊤
i H−1

η

)
H⊤

η a1

=
√

T θ̂⊤
i (â1 − a∗

1) +
√

Ta⊤
a Hη

(
θ̂i − H−1

η θi

)
+ op(1)

=
[
θ̂⊤

i [Iq
...0q×r] + a⊤

1 HηH−1
η G⊤HF [0r×qk

...Ir]
]√

T

 â1 − a∗
1

λ̂i − H−1
F λi

+ op(1).

Because θ̂⊤
i is an estimate of θ⊤

i H−⊤
η , taking the probability limit and applying Proposition 3 (b)

yields the result. ■

Proof of Theorem 2 (b). By adding and subtracting terms, we have the following asymptotic ex-

pansion

√
T
(
λ̂⊤

i Ψ̂sĜâ1 − λ⊤
i H−⊤

F H⊤
F ΨsH

−⊤
F H⊤

F GΣηHηH−1
η Σ−1

η a1
)

=
√

T λ̂⊤
i Ψ̂sĜ (â1 − a∗

1) +
√

Ta⊤
1 G⊤HF Ψ̂⊤

s

(
λ̂i − H−1

F λi

)
+

√
TH−1

F λ⊤
i

(
Ψ̂s − H⊤

F ΨsH
−⊤
F

)
H⊤

F Ga∗
1 + op(1)

=
√

T λ̂iΨ̂Ĝ (â1 − a∗
1) +

√
Ta∗⊤

1 G⊤HF Ψ̂⊤
s

(
λ̂i − H−1

F λi

)
+
(
λ⊤

i H−⊤
F ⊗ a∗⊤

1 G⊤HF

)√
T vec

(
Ψ̂s − H⊤

F ΨsH
−⊤
F

)
+ op(1)

=
[
λ̂⊤

i Ψ̂sĜ[Iq
...0q×r

...0q×r2 ] + a∗⊤
1 G⊤HF Ψ̂⊤

s [0r×q
...Ir

...0r×r2 ] (A.9)

+
(
λ⊤

i H−⊤
F

)
⊗
(
a∗⊤

1 G⊤HF

)
[0r2×q

...0r2×r

...Ir2 ]
]√

T


â1 − a∗

1

λ̂i − H−1
F λi

vec
(
Ψ̂⊤

s − H−1
F Ψ⊤

s HF

)

+ op(1).

Hence, we have

√
T
(
λ̂⊤

i Ψ̂sĜâ1 − λ⊤
i ΨsGa1

)
d→ N

(
0, Q̄2,iBsΣiB

⊤
s Q̄⊤

2,i

)
,
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where

Q̄2,i = λ⊤
i ΨsGΣηH̄ηC3 + a⊤

1 G⊤Ψ⊤
s H̄F C4 +

(
λ⊤

i H̄−⊤
F ⊗ a⊤

1 G⊤H̄F

)
C5,

and C3 = [Iq
...0q×r

...0q×r2 ], C4 = [0r×q
...Ir

...0r×r2 ] and C5 = [0r2×q

...0r2×r

...Ir2 ]. Applying the distribution

in Proposition 3 (a) yields the result. ■

Proof of Theorem 3 (a). The proof follows standard methods for proving overidentification tests.

Note that, the sample moment condition, derivative, and first order condition are respectively

GT = 1
T − p

T∑
t=p+1

(η̂−1t ⊗ Zt) , (A.10)

AT = Iq−1 ⊗

 1
T − p

T∑
t=p+1

η̂1tZ
⊤
t

 , (A.11)

AT WT GT = 0. (A.12)

Let δ̂ denote a GMM estimator obtained with an optimal weight matrix WT , i.e. WT
p→ W , which

is BΣ(1)
i B⊤. Expand the moment condition about GT (δ) to obtain

GT (δ̂) = GT (δ) + AT (δ∗)
(
δ̂ − δ

)
+ o

∥∥∥δ̂ − δ
∥∥∥ (A.13)

where ∥δ∗ − δ∥ ≤
∥∥∥δ̂ − δ

∥∥∥. Substituting this back into the first order condition yields

AT (δ̂)⊤W −1
T δ∗

(
δ̂ − δ

)
= −AT (δ̂)⊤W −1

T GT (δ)(
δ̂ − δ

)
= −

(
AT

(
δ̂
)⊤

W −1
T AT (δ∗)

)−1
AT (δ̂)⊤W −1

T GT (δ).

Substituting this back into the Taylor expansion gives

GT

(
δ̂
)

= GT (δ) + AT (δ∗)
(
δ̂ − δ

)
+ op(1)

= GT (δ) − AT (δ∗)
(

AT

(
δ̂
)⊤

W −1
T AT (δ∗)

)−1
AT

(
δ̂
)⊤

W −1
T GT (δ)

=
(

I − AT (δ∗)
(

AT

(
δ̂
)⊤

W −1
T AT (δ∗)

)−1
AT

(
δ̂
)⊤

W −1
T

)
GT (δ).
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Because AT

(
δ̂
)

p→ AT (δ), AT (δ∗) p→ AT (δ) by the proof of Theorem 1 (a), and WT
p→ W , the

Cramer-Wold device and Slutsky’s Theorem yield

√
TW

1/2
T GT

(
δ̂
)

p→
(

I − W −1/2A
(
A⊤W −1A

)−1
A⊤W −1/2

)
ZT

where ZT =
√

TW −1/2G (δ) d→ Z ∼ N(0, I). It follows that by recognising that plim
∣∣∣TQT (δ) − Z⊤

T ZT

∣∣∣ =

0,

TQT

(
δ̂
)

d→ Z⊤
(

I − W −1/2A
(
A⊤W −1A

)−1
A⊤W −1/2

)
Z = χ2

(k−1)(q−1).

■

Proof of Theorem 3 (b) and Theorem 3 (c).

These follow the Proofs of Theorem 1 and 2 of Andrews (1999), respectively. ■
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B Additional Simulation Results

T N h k = 1 k = 2 k = 3 k = 4

0 0.919 0.897 0.889 0.881
1 0.931 0.917 0.909 0.903
2 0.950 0.942 0.939 0.935
3 0.954 0.949 0.947 0.944
6 0.941 0.938 0.938 0.935
9 0.936 0.931 0.929 0.926

125

12 0.929 0.925 0.924 0.922
0 0.920 0.904 0.895 0.888
1 0.937 0.924 0.916 0.911
2 0.953 0.946 0.941 0.938
3 0.954 0.949 0.945 0.944
6 0.939 0.935 0.932 0.931
9 0.934 0.927 0.925 0.923

250

250

12 0.931 0.925 0.921 0.919

0 0.903 0.890 0.883 0.880
1 0.912 0.901 0.892 0.887
2 0.943 0.938 0.934 0.932
3 0.946 0.943 0.941 0.940
6 0.940 0.937 0.934 0.934
9 0.931 0.926 0.924 0.923

125

12 0.918 0.915 0.913 0.913
0 0.909 0.898 0.892 0.889
1 0.928 0.922 0.917 0.915
2 0.947 0.943 0.941 0.940
3 0.948 0.945 0.943 0.942
6 0.939 0.935 0.933 0.932
9 0.926 0.923 0.919 0.918

500

250

12 0.916 0.913 0.911 0.910

Note:
Entries report the coverage rate of the IRFs using the
proposed asymptotic distributions (nominal 95%).

Table 8: Coverage Probabilities

T N h k = 2 k = 3 k = 4 SVAR-IV (k = 4)

0 0.945 0.926 0.919 1.962
1 0.980 0.968 0.962 4.299
2 0.994 0.987 0.982 2.476
3 1.001 1.007 1.008 1.625
6 1.010 1.021 1.021 1.157
9 1.014 1.028 1.026 1.627

125

12 1.025 1.038 1.039 2.116
0 0.949 0.928 0.911 2.006
1 0.975 0.959 0.943 4.236
2 1.000 0.990 0.981 2.439
3 0.998 0.986 0.978 1.520
6 1.024 1.010 1.010 1.126
9 1.026 1.021 1.017 1.570

250

250

12 1.031 1.026 1.029 2.024

0 0.961 0.938 0.925 2.020
1 0.974 0.963 0.953 5.802
2 0.989 0.987 0.984 3.285
3 1.000 1.000 0.996 1.927
6 1.020 1.027 1.017 1.357
9 1.019 1.021 1.013 2.110

125

12 1.022 1.024 1.019 2.878
0 0.961 0.948 0.936 2.063
1 0.984 0.975 0.969 6.064
2 0.989 0.988 0.984 3.195
3 1.001 1.004 1.003 1.823
6 1.020 1.022 1.020 1.379
9 1.017 1.022 1.018 2.171

500

250

12 1.016 1.021 1.020 2.955

Note:
Entries report the RMSE ratios of the estimated IRFs of the overi-
dentified system to the just-identified system.

Table 9: RMSE ratios
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