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Abstract

This paper investigates the impact of structural breaks in the factor structure on factor-augmented

forecasting. We decompose the break in the factor loading matrix into rotational and shift components.

To effectively utilise the pre-break data and maintain robustness against shift breaks, we propose a

novel factor estimator that minimises the L2 distance between pre- and post-break loading matrices

through the rotation of factor estimates. We call this estimator the “rotated factors” and analyse its

asymptotic properties, along with two competing factor estimators, in the presence of different types of

breaks. To leverage the respective advantages of each factor estimator in an automatic data driven way,

we introduce a method that averages over sets of factor estimates using a leave-h-out cross-validation

criterion. Simulations demonstrate that combining different factor estimates through the proposed

cross-validation averaging approach leads to improved forecasting performance compared to existing

methods. Furthermore, we evaluate the effectiveness of our methods in an empirical application with

US macroeconomic data and emphasise the importance of incorporating structural breaks into factor-

augmented forecasting models.
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1 Introduction

Factor-augmented regressions, pioneered by Stock and Watson (2002a, 2012) have emerged as the prevail-

ing benchmark for macroeconomic forecasting. These models leverage unobserved factors that summarise

information from a large set of predictors, resulting in significant empirical success in forecasting. How-

ever, because the existing literature on factor-augmented forecasting generally assumes structural stability,

the presence of structural breaks in macroeconomic data poses a significant challenge. These breaks in

macroeconomic data can introduce disruptions in the factor structure of dynamic factor models, thereby

undermining the reliability and predictive power of the estimated factors.

In forecasting models that rely solely on observed predictors, addressing changes in regression coeffi-

cients is usually sufficient (Pesaran et al., 2006, 2013). However, in factor-augmented forecasting, equations

are affected by structural breaks in both the regression coefficients and the factor estimators. Previous

research has investigated the impacts of small and large breaks in the factor loading matrix on the factor

estimators. When the break size is small, the full-sample Principal Components (PC) estimator remains

robust; thus the break can be ignored during the estimation process, and the estimated factors remain

consistent up to a rotational basis, (Stock and Watson, 2002a; Bates et al., 2013). Conversely, large breaks

can increase the dimension of the factor space, leading to breaks in both the factor moments and the coef-

ficients in the forecasting equation (e.g. Han and Inoue, 2015; Duan et al., 2022). Indeed, large breaks can

contaminate the factor space, resulting in the PC estimator instead recovering some alternative “pseudo”

representation, which absorbs the effects of breaks. It is for this reason that the full sample principal

components are also known as the “pseudo-factor” method. In such cases, a split-sample method that

estimates the factors using post-break data becomes a natural choice for forecasting, (Baltagi et al., 2021).

However, this existing literature on factor-augmented forecasting is incomplete, because it only considers

the magnitude of the breaks, without differentiating the respective impacts of different types of breaks that

can occur in the factor structure. In this paper, we propose a model where the post-break loading matrix

is represented as a sum of two components: a shift component that is uncorrelated with the pre-break

loading matrix, and a rotational component that rotates the pre-break loading matrix. Motivated by the

uncorrelatedness between the shift and the pre-break loadings, we propose a new “rotated” factor estimator.

Specifically, the factors are first estimated using pre- and post-break data separately, and then the factors

are rotated by minimising the L2 distance between the pre- and post-break loading matrices. This rotation

ensures that the pre- and post-break factor estimates align asymptotically, allowing them to be combined

effectively to utilise pre-break data. Forecasting performance can thus be improved by mitigating the
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potentially significant bias-variance trade-off encountered in traditional full-sample and split-sample PC

approaches.

Our paper makes the following theoretical contributions. First, we analyse the impacts of shift and

rotational breaks on the asymptotic properties of three types of factor estimators: the (full-sample) pseudo-

factors, split-sample factors, and our newly introduced rotated factors. We obtain the convergence rates of

these factor estimators for different magnitudes of breaks under a local asymptotic framework. Notably, in

cases where there is a small or no rotational change, we find that even when a large shift break is present,

the rotated factor estimator can achieve the regular convergence rate obtained by Bai (2003) for factor

models without breaks. Consequently, our rotated factor estimator allows for much larger shift breaks

compared to the pseudo-factor estimator analysed by Bates et al. (2013).

Second, we derive the precise out-of-sample forecasting bias-variance trade-offs of different factor esti-

mators, and are thus able to compare their performance under different sizes of breaks. We find that the

proposed rotated factors are weakly dominant for small rotational breaks, while split-sample factors are

the best for large rotational breaks. For very large shift breaks or moderate rotational breaks, no single

factor estimator is uniformly superior. As an additional byproduct of this analysis, we find that under

certain conditions, the bias terms induced by the rotational and shift breaks may cancel out each other

to some extent, which offers an additional explanation for the successful forecast outcomes obtained with

pseudo-factor estimators in empirical applications, in comparison to the small breaks framework of Bates

et al. (2013).

Third, given the practical difficulty in estimating the sizes of rotational and shift breaks, we propose

a cross-validation criterion to average over forecasts based on all possible sets of factors and obtain data-

driven weights. We show that cross-validation using post-break residuals yields an asymptotically unbiased

estimator for the mean squared forecast errors, provided that the N and T dimensions approach infinity.

This establishes the validity of our cross-validation criterion, and extends the results of Cheng and Hansen

(2015) by incorporating structural breaks into the factor-loading matrix.

We conduct simulations to examine the impact of shift and rotational breaks with differing magnitudes

on sets of factor estimators, confirming the theoretical properties outlined earlier. Additionally, we assess

the effectiveness of the proposed cross-validation averaging estimator in automatically assigning appropriate

weights the different factor estimates. In an empirical study, we apply the proposed methods to the FRED-

MD macroeconomic dataset of McCracken and Ng (2020), focusing on breaks associated with the Global

Financial Crisis, (Cheng et al., 2016; Bai et al., 2020) and COVID-19 Pandemic (Ng, 2021; Bai et al., 2024).
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By analysing this real-world dataset, we evaluate the performance of the proposed averaging estimators in

comparison to existing approaches. Our findings reveal that merely allowing for a break in the forecasting

equation, as suggested by the literature, generally yields poor performance. In contrast, estimating the

factors in a manner that is robust to structural breaks, as we have proposed with our rotated factors

approach, offers significantly better performance. The application of a model averaging step then works at

automatically leveraging the respective advantages of each factor estimator. Together, these findings show

that the proposed estimators exhibit favourable outcomes, and the importance of incorporating structural

breaks into factor-augmented forecasting models.

Our work is closely related to the existing literature on factor models with breaks, their subsequent

consequences for factor-augmented forecasting, and forecast model averaging. Han and Inoue (2015); Bal-

tagi et al. (2021); Bai et al. (2024) study and propose tests for changes in the factor structure. Approaches

which study the effects of shift breaks specifically include Wang and Liu (2021); Pelger and Xiong (2022);

Massacci (2021), with Koo et al. (2023) additionally providing tests for rotational breaks as well. However,

the effects of these breaks on factor-augmented forecasting specifically is less well studied. Banerjee et al.

(2008) and Bates et al. (2013) demonstrate through simulation evidence that forecast accuracy deteriorates

when there is time-varying instability in the factor structure. Empirically, the results are much more mixed.

Corradi and Swanson (2014) and Massacci (2019) introduce tests to assess whether the forecasting equa-

tion and/or the factor structure exhibit any breaks and respectively report mixed and improved empirical

out of sample forecasting performance from incorporating breaks, whereas Stock and Watson (2009) find

substantial gains for in-sample fit by accounting for the Great Moderation as a structural break. Massacci

and Kapetanios (2024) explore the effects of structural breaks in factor-augmented forecasting using the

Common Correlated Effects approach (CCE) of Pesaran (2006). Attempts at developing factor-augmented

forecasting methods which are robust to structural breaks however, remain scarce. A notable exception is

Fu et al. (2023), who propose a time-varying FAVAR model. However, in addition to not differentiating

between break types, this approach essentially amounts to allowing for smooth changes in the forecasting

equation. Within the forecast averaging literature, Hansen (2007) and Wan et al. (2010) lower the predic-

tion loss of estimators via frequentist model averaging, with later refinements to a time-varying approaches

by Sun et al. (2021, 2023). These methods were extended to the case of structural breaks by Hansen

(2009) and Zhang and Liu (2023). Cheng and Hansen (2015) adapt model averaging to factor-augmented

forecasting, though do not consider structural breaks.

Our work is different from these studies in several key aspects. First, we differentiate between the
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impacts of rotational and shift breaks in a local asymptotic framework that allows for both small and large

magnitudes. Using this framework, we analyse their precise effects on the out-of-sample mean squared

forecast error (MSFE). Second, we develop the rotated factor estimator and its asymptotic properties,

showing that it is more robust to shift type breaks. Unlike pre-existing approaches, our rotated factors

are designed to be robust by themselves, and thus can be used directly without the need for breaks in

the forecasting equation. Third, we propose a model averaging approach that is robust in the presence

of structural breaks based on cross-validation, which addresses the practical difficulty of knowing the

magnitudes and types of breaks present in the data.

The paper is structured as follows. In Section 2, we introduce three candidate factor estimators and

discuss the implementation of the cross-validation criterion for model averaging. Section 3 outlines the

assumptions made in our analysis and establishes the asymptotic properties of the factor estimators. It also

provides detailed comparisons of the out-of-sample mean squared forecast errors of three factor estimators,

as well as the validity of the proposed cross-validation criterion for forecast combination. Section 4 presents

our simulation experiments. Section 5 provides an empirical application of our methods. For notations,

we use ∥A∥ = [trace(A⊤A)]1/2 to denote the Euclidean norm of matrix A, ⌊.⌋ to denote the floor operator,

M to denote a generic finite constant, p→ and d→ to denote convergence in probability and distribution,

respectively, and an ≍p bn to denote that an and bn are of the same stochastic order. All proofs are

relegated to the Appendix.

2 Model and Estimation

2.1 Model Setup

Suppose we have observations (yt, xit) for t = 1, . . . , T and i = 1, . . . , N , and the goal is to produce a direct

forecast for yT +h using the factor-augmented regression model

yt+h = f⊤
t β(L) + z⊤

t δ + ηt+h, (2.1)

where h ≥ 1 is the forecast horizon, and β(L) is a lag polynomial of order q for some 0 ≤ q ≤ qmax. The

term zt collects all other regressors thought to improve forecasting performance; typically this includes a

constant term, yt itself and its lags. Our theoretical analysis focuses on the case with stationary regressors.

We restrict our attention to the case of a structural break in the factor structure, as there exists a

breadth of literature in handling breaks in the forecasting equation itself (e.g. Pesaran et al., 2013; Corradi
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and Swanson, 2014). To this end, the r-dimensional factors ft are unobserved but related to the panel of

time series subject to one time break in the factor structure

xit =


λ⊤

1ift + eit, t = 1, . . . , ⌊πT ⌋ ,

λ⊤
2ift + eit, t = ⌊πT ⌋ + 1, . . . , T,

(2.2)

where π ∈ (0, 1) is the break fraction, partitioning the data into T1 = ⌊πT ⌋ and T2 = T − ⌊πT ⌋ sized

partitions, each loading onto a set of pre- and post-break loadings λ1i and λ2i respectively. In matrix

notation, we have

X =

X1

X2

 =

F1Λ⊤
1 + e(1)

F2Λ⊤
2 + e(2)

 , (2.3)

where X is T × N , F = (f1, . . . , fT )⊤ is T × r, Λ1 = (λ1,1, . . . , λ1,N )⊤ and Λ2 = (λ2,1, . . . , λ2N )⊤ are N × r,

and e(1), e(2) are the corresponding error matrices. Due to the large dimensionality of the loading matrices,

the literature has documented different types of breaks that can occur in them (see Han and Inoue, 2015;

Baltagi et al., 2017; Bai et al., 2024; Koo et al., 2023, and others). We show that different break types

affect factor estimation, and hence factor-augmented forecasting, in different ways. Following Koo et al.

(2023), we decompose the break as

Λ2 = Λ1Z + W (2.4)

where Z denotes a rotational change common to the cross-section, and W denotes a leftover idiosyncratic

shift component that is uncorrelated with Λ1. Due to its observational equivalence to a change in the

second moments of the factors, rotational changes have associated with a break in the factor variance (see

Wang and Liu, 2021; Pelger and Xiong, 2022; Duan et al., 2022; Koo et al., 2023). The case of no structural

break corresponds to the case of Z = Ir and W = 0.

To study the impacts of breaks of differing magnitudes, we consider parameterising Z as close to Ir,

and W as close to 0

Z = Ir + R

N1−ν
, (2.5)

W = D

N (1−α)/2 , (2.6)
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where R is some finite matrix satisfying ∥R∥ < M , D⊤Λ1
N = Op

(
1√
N

)
, and ν, α ∈ [0, 1], and control the

size of the rotation and shift breaks, respectively. Our formulation allows us to consider the cases of

small, moderate, and large rotational breaks, corresponding to the cases of ν < 0.5, ν = 0.5, and ν > 0.5,

as well as the cases of small, moderate, large, and very large shift breaks, corresponding to the cases of

α < 0.5, α = 0.5, α ∈ (0.5, 1), and α = 1. This characterisation is related to existing frameworks employed

by the literature to analyse weak loadings (see Bailey et al., 2021; Bai and Ng, 2023); we use it here to

analyse possibly small breaks. The formulation in Equation (2.5) implies the following rates

∥Ir − Z∥ = Op

(
Nν

N

)
, (2.7)

Λ⊤
1 W

N
= Op

(√
Nα

N

)
, (2.8)

where the latter is implied by the Central Limit Theorem for Λ1 and W which are uncorrelated in popu-

lation, but possibly not exactly orthogonal in finite sample.

Our characterisation of the shift break is also compatible with the interpretation that a fraction of series

have a break in their loadings. If wi is non-zero for i = 1, . . . , N1 with N1 ∝ Nα and 1√
N1

∑N1
i=1 λ1iw

⊤
i =

Op (1), then this implies that Λ⊤
1 W
N = Op

(√
Nα

N

)
, the same rate as Equation (2.8).

For simplicity, we treat the number of factors and break fraction as known, and note that both can be

consistently estimated. Should a practitioner wish to, we also show that with some suitable and tedious

adjustments, our forecast combination strategy can be extended to average forecasts generated from a finite

set of potential breakpoints and models with different numbers of factors, including a changing number of

factors.

2.2 Effects of Structural Breaks on Factor Estimates

2.2.1 Factor Space

We study the effects of a structural break on the factor estimates. It is well known that the principal

components estimator as estimated over the whole sample is inherently robust to small degrees of structural

changes, (see Stock and Watson, 1998; Bates et al., 2013; Baltagi et al., 2017). Our parameterisation

of the structural break naturally allows us to derive the specific rates induced by the respective bias

terms. To illustrate this, note that the parameterisation in Equation (2.4) implies the following equivalent
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representation

X =

 F1 0

F2Z⊤ F2


Λ⊤

1

W ⊤

+ e

=
[
Gr Gp

] Λ⊤
1

W ⊤

+ e

= GΞ⊤ + e. (2.9)

Equation (2.9) shows that if the break is ignored, the principal components estimator estimates the pseudo-

factors G, where the first r columns Gr are subject to the effects of the rotational break (if any), and is

augmented by extra r columns in the form of Gp due to the shift type break (if any). The extra r columns

Gp are known as the augmentation effect, resulting in an extra bias term which depends on α. Hence, the

first set of factor estimates we consider are simply
√

T multiplied by the first r eigenvectors of XX⊤/(TN).

We denote these as F̃P , as these are now understood to be the pseudo-factors, which are a noisy estimate

of Gr contaminated by Gp. utilizing F̃P in the forecasting equation may lead to significance bias due to

both types of breaks.

As noted by Baltagi et al. (2021), a structural break in the factors can also be accommodated by using

the subsample factors F̃1 and F̃2, which are
√

T1 times the first r eigenvectors of X1X⊤
1 /(T1N) and

√
T2

times the first r eigenvectors of X2X⊤
2 /(T2N), respectively. The subsample factors recover the true factors

F1 and F2 up to two different rotational bases; the split-sample factors F̃S =
[
F̃ ⊤

1 , F̃ ⊤
2

]⊤
therefore require

adding a structural break in the forecasting equation. Algebraically, this is identical to simply using the

post-break data for estimation, and thus is robust to both types of breaks albeit at the cost of increased

variance.

Perhaps unsurprisingly, we show that such split-sample approaches do not work well empirically. Thus,

we propose a way of combining the subsample factors directly, and thus alleviate the need for a break in

the forecasting equation. To this end, we follow Koo et al. (2023) and define a set of “rotated” factors,

which rotates the estimated post-break factors onto the same rotational basis as the pre-break factors.

Specifically, we define the rotated factors as F̃R =
[
F̃ ⊤

1 , Z̃F̃ ⊤
2

]⊤
where

Z̃ =
(
Λ̃⊤

1 Λ̃1
)−1

Λ̃⊤
1 Λ̃2 (2.10)

is an estimator of Z defined in 2.4 the OLS estimates of the pre- and post-break loadings Λ̃1 = 1
T1

X⊤
1 F̃1
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and Λ̃2 = 1
T2

X⊤
2 F̃2, respectively. We will show the rotated factors exhibit greater robustness to shift-type

breaks than the pseudo-factors. To provide context, 1 previews the theoretical results from 3, summarising

the maximum break orders that can be tolerated by the pseudo-, split-sample, and rotated factors, without

slowing their convergence rates.

Table 1: Maximum order of breaks allowed to achieve the regular Op

(
δ−2

NT

)
convergence rate if N ∝ T .

Rotation Shift Notes

Pseudo Factors F̃P ν ≤ 0.5 α ≤ 0.5 Uses whole sample of data

Split Sample Factors F̃S ν = 1 α = 1 Requires break in forecast equation

Rotated Factors F̃R ν ≤ 0.5 α = 1 Robust to shift breaks

2.3 Bias-variance Trade-offs

The theoretical results for the factor space allow us to analyse the precise bias-variance trade-offs for the

mean squared forecast error (MSFE) across all sets of factor estimates. To simplify notation, we restrict

Equation (2.1) to include only an intercept and lags of yt in zt, and rewrite it without loss of generality as

yt+h = c⊤
t θ + ηt+h

= µt + ηt+h, (2.11)

where ct =
[
f⊤

t , . . . , f⊤
t−q, z⊤

t

]⊤
collects the regressors, θ =

(
β⊤

1 , . . . , β⊤
q , δ⊤

)⊤
collects all the lag polyno-

mials, and µt denotes the conditional mean. The h-step ahead forecast is produced in using the following

“two-step” approach:

1. Use xit for t = 1 : T to estimate F̃P = [f̃P,1, . . . , f̃P,T ]⊤, F̃S =
[
f̃S,1, . . . , f̃S,T

]⊤
, and F̃R =[

f̃R,1, . . . , f̃R,T

]⊤
.

2. Estimate Equation (2.11) by regressing the response vector Y on C̃P , C̃S , and C̃R, the matrix

counterparts of c̃P,t, c̃S,t and c̃R,t, which replace the ft in ct with f̃P,t, f̃S,t, and f̃R,t with data up to

T − h, to produce θ̂P , θ̂S , and θ̂R.

3. Compute the pseudo-, split-sample, and rotated factor forecasts, respectively, as c̃⊤
P,T θ̂P , c̃⊤

S,T θ̂S , and
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c̃⊤
R,T θ̂R.

We highlight three main findings from our analysis of the bias-variance trade-offs. Their detailed mathe-

matical derivations can be found in Section 3.2.

Pseudo-factors and rotated factors are asymptotically equivalent for small shift breaks, re-

gardless of the size of rotational breaks. When the shift break is small where α < 0.5, we find

that the pseudo- and rotated factor methods recover the same factor space Gr, and therefore produce

asymptotically identical forecasts.

Rotated factors weakly dominate pseudo-factors for small rotational breaks, regardless of the

size of shift breaks. While both the pseudo- and rotated factors estimate Gr, the rotated factors are

more robust to shift breaks as their effects have been “purged out.” Thus, for small rotational breaks (i.e.

Gr is close to F ), the rotated factors weakly dominate the pseudo-factors in terms of MSFE, regardless of

the size of the shift break.

Split-sample factors dominate for large rotational breaks ν > 0.5. Naturally, the fact that pseudo-

and rotated factors both estimate Gr means that they are always subject to the effects of rotational breaks.

Thus, when the rotational break is large, both are dominated by the split-sample factors.

In practice, estimating the sizes of the shift and rotational breaks is challenging, making it difficult to

determine which set of factors is optimal. This motivates us to develop the theoretical justification for

using frequentist model averaging criteria as a data-driven approach to automatically combine the forecasts

yielded by different factor estimators.

2.4 Model Averaging and Cross-validation

2.4.1 Model Averaging Framework

Although it is possible to test for evidence of breaks in the factor structure as well as disentangle which

type of break has occurred (e.g. Koo et al., 2023), it is generally difficult to estimate the corresponding size

of the breaks ν and α. Additionally, as noted by Hansen (2009), forecasting strategies based on hypothesis

testing often adopt an all-or-nothing approach and do not perform well empirically. To address this, we

propose averaging over possible factor estimates, which also allows for averaging over an unknown lag

structure in the forecasting equation, similar to Cheng and Hansen (2015). Suppose that there are M

approximating models, each specifying a different lag structure or subset of the largest set of regressors
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ct(M) =
(
1, yt, . . . , yt−pmax , f⊤

t , . . . , f⊤
t−qmax

)⊤
, where pmax is the maximum lag order for yt. Doing so

allows us to re-write Equation (2.1) in scalar and matrix forms, respectively:

yt+h = ct(M)⊤θ + ηt+h, (2.12)

Y = C(M)θ + η. (2.13)

Remark. Equation (2.1) assumes that yt is generated from ft, which are the true factors subject to strict

stationarity, and implicitly assumes that the rotational break is not part of the factors. Conversely, some

literature interprets the rotational change as part of the factors themselves changing (e.g. Massacci, 2021;

Wang and Liu, 2021; Pelger and Xiong, 2022; Koo et al., 2023), implying that yt is generated from gt. In

this case, estimators of gt, including the pseudo-factors and rotated factors, would be effective, eliminating

the need for a break in the forecasting equation since the rotational break would not be relevant. Our model

averaging approach can automatically handle this ambiguity because it assigns weights by minimising the

cross-validated forecast loss.

To accommodate the possibility of a possible structural break in the factor structure, we consider three

different possible sets of factor estimates: the first r pseudo-factors F̃P , the split-sample factors F̃S , and

the rotated factors F̃R. Combining the three different factor estimates with the M different possible lag

structures yields 3 × M possible models in total. Without loss of generality, we define each mth set of

regressors as

c̃t(m) =



c̃P,t(m) m = 1, . . . , M,

c̃S,t(m) m = M + 1, . . . , 2M,

c̃R,t(m) m = 2M + 1, . . . 3M,

(2.14)

i.e. c̃t(m) contains the M possible lag structures for the pseudo-factors, split-sample factors, and rotated

factors. The choice of lag structures to consider is not critical; a simple approach we employ is to use

sequentially nested subsets of ct(m). Defining C̃(m) as the matrix counterpart of c̃t(m), the least squares

estimate of θ(m) is then θ̂(m) =
(
C̃(m)⊤C̃(m)

)−1
C̃(m)⊤Y with residual η̂t+h = yt+h − c̃t(m)⊤θ̂(m). The

least squares conditional forecast of yT +h by the mth approximating model is

ŷT +h|T (m) = c̃t(m)⊤θ̂(m). (2.15)
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Forecast combinations across all 3M models can then be constructed by a weighted average

ŷT +h|T (w) =
3M∑
m=1

w(m)ŷT +h|T (m), (2.16)

where w(m), m = 1, . . . , 3M are forecast weights such that all weights are in the unit simplex. Corre-

spondingly, the forecast combination residual is η̂t+h(w) =
∑3M

m=1 w(m)η̂t+h(m).

2.4.2 Cross-validation Criterion

We propose the use of a post-break cross-validation for model selection and averaging in the presence of

a possible structural break. In the case of no structural break, the whole sample cross-validation criterion

remains valid for multi-step-ahead forecasts in the case of serially correlated ηt+h, unlike the Mallows

Criterion (Cheng and Hansen, 2015). The presence of a structural break in the regressors thus necessitates

the use of post-break cross-validation residuals. To construct this criterion, define the leave-h-out prediction

residual η̃t+h,h(m) = yt+h − c̃t(m)⊤θ̃t,h(m) where θ̃t,h(m) is the least squares fit from a regression of yt+h

on c̃t(m) with the observations {yj+h, c̃j(m) : j = t − h + 1, . . . , t + h − 1} omitted. Note that this set of

leave-h-out residuals uses the factors estimated from the whole sample. When h = 1 the leave-one-out

prediction residual has the simple formula

η̃t+h,h(m) = η̂t+h(m)
(

1 − c̃t(m)⊤
(
C̃(m)⊤C̃(m)

)−1
c̃t(m)

)−1
.

More generally for h > 1, the leave-h-out residual has the formula

η̃t+h,h = η̂t+h(m) + c̃t(m)⊤

 ∑
|j−t|≥h

c̃j(m)c̃j(m)⊤

−1

×

 ∑
|j−t|≥h

c̃j(m)η̂j+t(m)

 .

Let the leave-h-out prediction residuals for forecast combination be η̃t+h,h(w) =
∑3M

m=1 w(m)η̃t+h,h(m).

The corresponding cross-validation criterion is then

CVh,T (w) = 1
⌊(1 − π)T ⌋

T∑
t=⌊πT +1⌋

η̃t+h,h(w)2

= 1
⌊(1 − π)T ⌋

T∑
t=⌊πT +1⌋

( 3M∑
m=1

w(m)η̃t+h,h(m)
)2

. (2.17)

12



The cross-validation weight vector is the minimiser of the criterion:

ŵ = arg min
w∈H 3M

CVh,T (w), (2.18)

which is quadratic in w and can therefore be solved via quadratic programming routines. The combined

forecast based on our cross-validation is denoted as ŷT +h|T (ŵ), which we call the leave-h-out cross-validation

averaging (CV Ah) forecast.1

3 Asymptotic Theory

We provide the detailed asymptotic theory for the behaviour of the factor estimates, the bias-variance

trade-offs of their subsequent forecasts, and the validity of the cross-validation procedure.

3.1 Effects on Factor Estimates

We first provide the precise theoretical justification for the effects of structural breaks in the factor structure

on the proposed factor estimates. To do so, we make the following assumptions.

Assumption 1. E∥ft∥4 < ∞, E(ftf
⊤
t ) = ΣF and 1

T

∑T
t=1 ftf

⊤
t

p→ ΣF for some positive definite ΣF .

Assumption 2. There exists a positive constant M < ∞ such that

a) E∥λ1,i∥4 ≤ M ,
∥∥∥Λ⊤

1 Λ1/N
∥∥∥− ΣΛ1

p→ 0 for some ΣΛ1 > 0.

b) Z = Ir + R
N1−ν , where ∥R∥ ≤ M and ν ∈ [0, 1].

c) W = D
N(1−α)/2 where D⊤D

N

p→ ΣD > 0, D⊤Λ1 = Op

(
1√
N

)
and α ∈ [0, 1].

Assumption 3. There exists a positive constant M < ∞ such that for all N and T :

a) E(eit) = 0, E|eit|8 ≤ M .

b) E(e⊤
s et/N) = E(N−1∑N

i=1 eiseit) = γN (s, t), |γN (s, s)| ≤ M for all s, and

T −1∑T
t=1

∑T
s=1 |γN (s, t)| ≤ M .

c) E(eitejt) = τij,t, with |τij,t| < τij for some τij and for all t. In addition,

N−1∑N
i=1

∑N
j=1 |τij | ≤ M .

1It is also straightforward to define a post-break CV criterion for model selection as CVh,T (m) =
1

⌊(1−π)T ⌋

∑T

t=⌊πT +1⌋ η̃t+h,h(m)2. The corresponding cross-validation selected model is m̂ = argmin1≤m≤3MCVh,T (m); the
selected forecast is ŷT +h|T (m̂).
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d) E(eitejs) = τij,ts, and (NT )−1∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M .

e) For every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤ M .

Assumption 4. For m = 1, 2, the variables {λm,i}, {ft}, and {eit} are mutually independent groups.

Assumption 5. There exists an M < ∞ such that for all T and N , and for every t ≤ T and i ≤ N such

that:

a)
∑T

s=1 |γN (s, t)| ≤ M ;

b)
∑N

k=1 |τki| ≤ M .

Assumption 6. Let ι1t ≡ 1t≤πT and ι2t ≡ 1t≥πT +1. There exists an M < ∞ such that for all N, T , and

m = 1, 2:

a) E
∥∥∥ 1

NT

∑T
s=1

∑N
k=1 fs[eksekt − E(eksekt)] · ιms

∥∥∥2
≤ M for each t.

b) E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 ftλ

⊤
m,kekt · ιmt

∥∥∥2
≤ M .

c) E
∥∥∥ 1√

NαT

∑T
t=1

∑N
k=1 ftw

⊤
k ekt · ιmt

∥∥∥2
≤ M .

d) For each t E
∥∥∥ 1√

N

∑N
i=1 λ1,ieit

∥∥∥4
≤ M .

e) For each t E
∥∥∥ 1√

Nα

∑N
i=1 wieit

∥∥∥4
≤ M .

Assumption 7. The eigenvalues of (ΣΛ1ΣF ) and (ΣΛ2ΣF ) are distinct.

Assumption 8. The break fraction π is bounded away from 0 and 1, and

a)
∥∥∥ 1√

NT

∑⌊πT ⌋
t=1

∑N
k=1 ftλ

⊤
m,kektιmt

∥∥∥2
= Op (1),

∥∥∥ 1√
NT

∑T
t=⌊πT +1⌋

∑N
k=1 ftλ

⊤
m,kektιmt

∥∥∥2
= Op (1) for m =

1, 2, and

b)
∥∥∥ √

T
⌊πT ⌋

∑⌊πT ⌋
t=1 (ftf

⊤
t − ΣF )

∥∥∥ = Op (1), and
∥∥∥ √

T
T −⌊πT ⌋

∑T
t=⌊πT +1⌋(ftf

⊤
t − ΣF )

∥∥∥ = Op (1).

Assumptions 1 to 7 are either straight from, or slight modifications of those in Bai (2003). Assumption 1

is the same as Assumption A in Bai (2003), except that we require the second moment of ft to be time

invariant. This additional “strict” stationarity assumption is common as an identification condition (e.g.

Han and Inoue, 2015; Baltagi et al., 2017, and others). Assumption 2 (a) is the same as Assumption B in Bai

(2003), and allows for the loadings to be random. Assumptions 2 (b) and 2 (c) characterise the sizes of the

rotational and shift breaks, respectively. Assumption 3 allows for weak serial and cross-sectional correlation

14



and defines the approximate factor model, corresponding to Assumption C of Bai (2003). Assumption 4 is

standard in the factor modelling literature, and is the subsample version of Assumption D of Bai and Ng

(2006). Assumption 5 is a strengthened version of Assumption 3, but still allows for heterogeneity in time

and cross-sectional dimensions, corresponding to Assumption E in Bai (2003). Assumption 6 corresponds

to Assumptions F1-F2 in Bai (2003). Although we require Assumption 6, which are moment conditions in

Bai (2003), asymptotic normality of N−1/2∑N
i=1 λieit is not required for the purposes of estimation. Also,

Assumption 6 (c) is slightly stronger than Assumption F3 of Bai (2003), which only requires the existence

of the second moments. Assumption 7 corresponds to Assumption G in Bai (2003). Assumption 8 requires

that the sample sizes before and after the potential break date go to infinity. It is a weaker version of

Assumption 8 in Han and Inoue (2015), who assumes that the terms are bounded uniformly in a range of

potential π.

Remark. Similar to Koo et al. (2023) we require the break fraction π and the number of factors r pre-

and post-break to be known. This is not restrictive, as several consistent estimates of π exist (e.g. Baltagi

et al., 2017; Bai et al., 2020, 2024). Conditional on some consistent estimate π̂, the subsample factors F̃1

and F̃2 are able to achieve the usual Op

(
δ−2

NT

)
consistency rate. The number of factors r, can be estimated

by either the information criterion of Bai and Ng (2002) in each subsample (see Baltagi et al., 2017), or

using an information criterion robust to breaks over the whole sample (see Su and Wang, 2017). With some

adjustments, our theoretical results also hold as long as the number of factors specified by the practitioner

does not exceed r, similar to Cheng and Hansen (2015). For notational clarity, we proceed as if r is known.

If practitioners wish to consider different candidate r and π (including the case of r changing), these can

simply be averaged over in our model averaging step following some suitable adjustments to the theory.2

Pseudo-factors

To analyse the asymptotic properties of F̃P , we separate the analysis in the two cases of α < 1 and α = 1.

In the case of α < 1, the analysis of F̃P proceeds by treating the first r factors Gr as “strong” factors, and

the additional Gp columns induced by the shift break as additional noise. Hence, F̃R is estimating GrHG

where the normalisation basis is defined as

HG = Λ⊤
1 Λ1
N

G⊤
r F̃P

T
V −1

NT,r, (3.1)

where VNT,r is a diagonal matrix of the first r eigenvalues of (NT )−1XX⊤ in descending order.
2See Appendices A.5 and A.7
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However, when α = 1 the shift break is too large to ignore, and hence HG is unsuitable. In this case,

we can recognise that the factor structure now consists of 2r “strong” factors G =
[
Gr Gp

]
which load

onto the pseudo-loadings Ξ in Equation (2.9). Hence, F̃P which are the first r eigenvectors can be analysed

as a subset of G̃, the first 2r principal components, and we are able to specify a normalisation basis with

a valid probability limit3 as

HΞ,r = Ξ⊤Ξ
N

G⊤F̃P

T
V −1

NT,r. (3.2)

Split Sample Factors

The results for using the split-sample factors F̃S follow from Bai and Ng (2002). Define the following

subsample rotational bases as

H1 = Λ⊤
1 Λ1
N

F ⊤
1 F̃1
T1

V −1
NT,1, H2 = Λ⊤

2 Λ2
N

F ⊤
2 F̃2
T2

V −1
NT,2, (3.3)

where VNT,1 and VNT,2 are diagonal matrices consisting of the first r eigenvalues of X1X⊤
1 /(NT1) and

X2X⊤
2 /(NT2), respectively. However, in general, H1 ̸= H2, and this requires allowing for a break in the

forecasting equation. This is algebraically equivalent to using the post-break data to estimate the factors

and forecasting equation, at the potentially large cost of increased variance.

Rotated Factors

The rotated factors F̃R are designed to overcome the shortcoming of the split-sample factors, and produce

a set of factors on the same normalisation basis that are robust to structural breaks.

Proposition 1. Under Assumptions 1 to 8 and as N, T → ∞,

Z̃ = H⊤
1 ZH−⊤

2 + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

The proof of Proposition 1 in provided in Appendix A.4. Because F̃2 estimates F2H2, and F̃1 estimates

F1H1, Proposition 1 shows that the post-break factors F̃2 can be rotated onto the same basis as F̃1 by simply

post-multiplying it by Z̃⊤. Because the shift break W is uncorrelated with Λ1, this operation “purges out”

any shift breaks. Note, however, that this rotation operation absorbs the effect of any rotational break Z,

and is therefore not robust to this type of break.
3See Lemma 2.
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With the above specification of the various normalisation bases, the consistency rates of the pseudo,

split-sample, and rotated factors can be summarised in the following theorem.

Theorem 1. Under Assumptions 1 to 8, as N, T → ∞,

a) The pseudo-factors F̃P satisfy:

T −1
∥∥∥F̃P − GrHG

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
, for α < 1,

T −1
∥∥∥F̃P − FHG

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
+ Op

(
N2ν

N2

)
, for α < 1, and

T −1
∥∥∥F̃P − GHΞ,r

∥∥∥2
= Op

(
1

δ2
NT

)
, for α = 1,

b) The split-sample factors F̃S = [F̃ ⊤
1 , F̃ ⊤

2 ]⊤ for ι = 1, 2 satisfy:

T −1
∥∥∥F̃ι − FιHι

∥∥∥2
= Op

(
1

δ2
NT

)
,

c) The rotated factors F̃R =
[
F̃ ⊤

1 , Z̃F̃ ⊤
2

]⊤
satisfy:

T −1
∥∥∥F̃R − GrH1

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
Nα

N2

)
, and

T −1
∥∥∥F̃R − FH1

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
Nα

N2

)
+ Op

(
N2ν

N2

)
.

Theorem 1 (a) provides the convergence rates for the pseudo-factors F̃P . For α < 1, the consistency

result is stated in terms of Gr which absorbs the effects of the rotational break into the factor space, and

F , the original factor space. For α = 1, Theorem 1 (a) is stated in terms of the consistency to GHΞ,r,

and therefore formalises how F̃P estimates a linear combination of Gr and Gp when the shift break is very

large. Theorem 1 (b) are simply the subsample versions of Theorem 1 of Bai and Ng (2002), and show

that F̃1 and F̃2 are estimating F1H1 and F2H2 respectively. Because the normalisation bases H1 and H2

generally differ, this requires introducing a break in the forecasting equation. Theorem 1 (c) presents the

mean square consistency results for the rotated factors F̃R, and is similarly presented in terms of both Gr

and F . The Op
(
Nα−2) term in Theorem 1 (c) shows that the convergence rate of F̃R is (weakly) faster

than that of F̃P . Notably, even in the case of α = 1, the additional Op
(
Nα−2) term arising from the shift

break is no larger than the usual Op

(
δ−2

NT

)
rate, explaining why the rotated factors can tolerate α = 1 as
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shown in Table 1.

3.2 Forecasting Bias-variance Trade-offs

3.2.1 Model and Expansion Results

Next, we provide the precise theoretical analysis of the bias-variance tradeoffs for out-of-sample forecasting

using different factor estimators. Without loss of generality, we assume that the lag structure of the

forecasting equation is known and only contains one lag of ft. The general case of q > 1 lags of ft follows

at the cost of more complex notation after suitably redefining the regressor matrices, and an extension to

an unknown lag structure can be handled by our model averaging framework in Section 3.3. To analyse the

effects of the structural break on the forecasting equation, we make the following additional assumptions.

Let Ft = σ (yt, ft, x1t, x2t, . . . , ft−1, yt−1, x1,t−1, x2,t−1, . . . ) denote the information set at time t.

Assumption 9.

a) E (ηt+h|Ft) = 0.

b)
(
c⊤

t , ηt+h, e1t, . . . , eNt

)
is piece-wise strictly stationary and ergodic before and after the break.

c) E∥ct∥4 ≤ M , Eη4
t ≤ M , and 1

T

∑T
t=1

(
ctc

⊤
t

)
p→ ΣCC > 0.

d) 1√
T

∑T −h
t=1−h ctηt+h

d→ N(0, ΩCC,η), where ΩCC,η =
∑

|j|<h E
(
ctc

⊤
t−jηt+hηt+h−j

)
> 0.

e) There exists a set S of finite cardinality such that y ⊥⊥ λ1ieiT .

Assumption 9 places additional assumptions on the forecasting error term ηt, and follows from Assump-

tion R of Cheng and Hansen (2015). Assumption 9 (a) implies that ηt+h is conditionally unpredictable at

time t. The variance ΩCC,η incorporates autocovariances up to order less than h because ηt+h is typically

a moving average process of order h − 1. Assumption 9 (b) assumes that the data is piece-wise stationary

and ergodic before and after the break. Assumptions 9 (c) and 9 (d) are standard moment conditions

and the central limit theorem, the latter of which is satisfied under standard weak dependence conditions.

Assumption 9 (e) allows for limited dependence between yt and the idiosyncratic error, and is looser than

independence and zero mean required by Assumption E and Assumption 3c) of Bai and Ng (2006) and

Gonçalves and Perron (2014), respectively.

Using the rates derived in Theorem 1, we show that the pseudo-, split-sample, and rotated factor

methods have the following expressions for their out-of-sample biases and variances.
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Proposition 2. Under Assumptions 1 to 9 (d), as N, T → ∞ and under the condition that N ∝ T , then:

bias(c̃⊤
P,T θ̂P ) =

(I − Z) −
(

Λ⊤
1 Λ1
N

)−1(
F̃ ⊤

P Gr

T

)−1
F̃ ⊤

P Gp

T

W ⊤W

N

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T


−
(

Λ⊤
1 Λ1
N

)−1 Λ⊤
1 eT

N

⊤

β + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
, (3.4)

bias(c̃⊤
S,T θ̂S) =−e⊤

T Λ2
N

(
Λ⊤

2 Λ2
N

)−1

β + Op

(
1

δ2
NT

)
, (3.5)

bias(c̃⊤
R,T θ̂R) =

(I − Z)

fT − F̃ ⊤
2 C̃R,2

T

(
C̃⊤

R C̃R

T

)−1

c̃R,T

− Z

(
Λ⊤

2 Λ2
N

)−1 Λ⊤
2 eT

N

⊤

β

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
, (3.6)

var
(
c̃⊤

P,T θ̂P

)
= var

(
c̃⊤

S,T θ̂S

)
= var

(
c̃⊤

R,T θ̂R

)
= Op

(
T −1

)
. (3.7)

Equations (3.4) to (3.6) in Proposition 2 express the bias in terms of the rotational break (I − Z),

shift break
(
W ⊤W/N

)
, and inherent estimation uncertainty. Equation (3.7) shows that the variance

terms for all three forecasts are of order Op
(
T −1), with their specific forms are relegated to Appendix B

of the Appendix. Therefore, by analysing these bias terms in detail for (α, ν) ∈ {[0, 0.5), 0.5, (0.5, 1]},

corresponding to small, moderate, and large breaks, we have the following comparisons between different

forecasts.

Theorem 2. Under Assumptions 1 to 9 (d), as N, T → ∞ and under the condition that N ∝ T , then:

a) For small shift breaks α < 0.5, c̃⊤
P,T θ̂P − c̃⊤

R,T θ̂R = op(N−1/2),

b) For small rotational breaks ν < 0.5, and if Assumption 9 (e) additionally holds,

∥∥∥c̃⊤
P,T θ̂P − c⊤

T θ
∥∥∥2

≍p

∥∥∥c̃⊤
S,T θ̂S − c⊤

T θ
∥∥∥2

,∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

/min

[∥∥∥c̃⊤
P,T θ̂R − c⊤

T θ
∥∥∥2

,
∥∥∥c̃⊤

S,T θ̂S − c⊤
T θ
∥∥∥2
]

p→ 0, for α = 0.5,∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

/
∥∥∥c̃⊤

S,T θ̂S − c⊤
T θ
∥∥∥2 p→ 0,∥∥∥c̃⊤

S,T θ̂S − c⊤
T θ
∥∥∥2

/
∥∥∥c̃⊤

P,T θ̂P − c⊤
T θ
∥∥∥2 p→ 0, for 0.5 < α < 1, and∥∥∥c̃⊤

R,T θ̂R − c⊤
T θ
∥∥∥2

≍p

∥∥∥c̃⊤
S,T θ̂S − c⊤

T θ
∥∥∥2

,∥∥∥c̃⊤
P,T θ̂P − c⊤

T θ
∥∥∥2

/max

[∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

,
∥∥∥c̃⊤

S,T θ̂S − c⊤
T θ
∥∥∥2
]

p→ ∞, for α = 1,
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c) For moderate rotational breaks ν = 0.5,

∥∥∥c̃⊤
P,T θ̂P − c⊤

T θ
∥∥∥2

≍p

∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

≍p

∥∥∥c̃⊤
S,T θ̂S − c⊤

T θ
∥∥∥2

, for α = 0.5, and∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

≍p

∥∥∥c̃⊤
S,T θ̂S − c⊤

T θ
∥∥∥2

,∥∥∥c̃⊤
P,T θ̂P − c⊤

T θ
∥∥∥2

/max

[∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

,
∥∥∥c̃⊤

S,T θ̂S − c⊤
T θ
∥∥∥2
]

p→ ∞, for α > 0.5,

d) For large rotational breaks ν > 0.5,

∥∥∥c̃⊤
S,T θ̂S − c⊤

T θ
∥∥∥2

/min

[∥∥∥c̃⊤
R,T θ̂R − c⊤

T θ
∥∥∥2

,
∥∥∥c̃⊤

P,T θ̂P − c⊤
T θ
∥∥∥2
]

p→ 0.

Theorem 2 provides the detailed comparisons between different forecasts produced by each set of factor

estimates for varying sizes of shift and rotational breaks, which we summarise into four cases. Theorem 2 (a)

implies that
∥∥∥c̃⊤

P,T θ̂P − c̃⊤
R,T θ̂R

∥∥∥2
/max

[∥∥∥c̃⊤
P,T θ̂P − c⊤

T θ
∥∥∥2

,
∥∥∥c̃⊤

R,T θ̂R − c⊤
T θ
∥∥∥2
]

p→ 0, and shows the asymptotic

equivalence between the pseudo-factors and the rotated factors for α < 0.5. This result holds regardless of

the size of the rotational break, and follows because both the pseudo- and rotated factors F̃P and F̃R are

estimating Gr, the first r pseudo-factors. Theorem 2 (b) shows how the rotated factors weakly dominate

the pseudo-factors when the rotational break is small. Additionally, it shows that the rotated factors have

MSFEs smaller than the split-sample approach for all but very large shift breaks corresponding to α = 1.

Theorem 2 (c) shows that rotated and split-sample factors have MSFEs that are of the same asymptotic

order for moderate rotational breaks; additionally if the shift break is also moderate, then the MSFE of

the pseudo-factors is also of the same asymptotic order. This represents the region where the biases in the

rotated and pseudo-factors, induced by the break terms, are of the same order of magnitude as the loss in

efficiency from using the split-sample factors. Therefore, the specific ranking of each method in this region

depends on the data-generating process. Theorem 2 (d) shows that both the pseudo- and rotated factors

cannot handle large rotational breaks, and are therefore dominated by the split-sample factors. For clarity,

the results of Theorem 2 are summarised in Table 2.

3.3 Forecast Model Selection and Averaging

Next, we provide the theoretical justification of the proposed cross-validation averaging procedure, which

holds even in the context of a structural break, and for h > 1 or if the errors are possibly conditionally het-

eroskedastic. First, it helps to understand that a h-step ahead forecast is actually a specific leave-h-out es-

20



ν < 0.5 ν = 0.5 ν > 0.5
α < 0.5
α = 0.5 R
0.5 < α < 1 S
α = 1

Table 2: Summary of Theorem 2. The yellow region represents where the rotated factors are the best
method. The orange region represents where the split-sample factors are the best method. The white
region represents where there is no dominating method. The red box represents the region where rotated
factors dominate the pseudo-factors. The blue box represents the region where the rotated factors are
equivalent to pseudo-factors.

timator. Following Hansen (2010) and Cheng and Hansen (2015), the h-step ahead forecast is ŷT +h|T (m) =

c̃T (m)⊤θ̂(m), where θ̂(m) is the least squares estimate with data sample {yt+h, c̃t(m) : t = 1 − h, . . . , T − h}.

Compared to a leave-h-out4 estimator θ̃T,h(m) with the observations {yj+h, c̃j(m) : j = T − h + 1, . . . , T + h − 1}

omitted, the sample used in estimation is identical. Hence, θ̂(m) = θ̃T,h(m), and the h-step ahead forecast

can be written as ŷT +h|T (m) = c̃T (m)⊤θ̃T,h(m). The forecast error is also equivalent to the leave-h-out

prediction residual and is yT +h − ŷT +h|T (m) = yT +h − c̃T (m)⊤θ̃T,h(m) = η̃T +h,h(w). The MSFE of the

point forecast equals

MSFET (w) = E
(
yT +h − ŷT +h|T (w)

)2
= Eη̃2

T +h,h(w)2. (3.8)

Thus, the cross-validation criterion in Equation (2.17) can be naturally viewed as an estimator of the

expectation Eη̃2
T +h,h(w)2.

Let the leave-h-out fitted values for the mth model be µ̃t,h(m) = c̃t(m)⊤θ̃t,h(m) and for the weighted

model as µ̃t,h(w) =
∑3M

m=1 w(m)c̃t(m)⊤θ̃t,h(m). The leave-h-out prediction residuals are η̃t+h,h(w) = yt+h −

µ̃t,h(w), or equivalently using vector notation, η̃h(w) = η + µ − µ̃h(w). Therefore, we have

CVh,T (w) = 1
T2

T −h∑
t=T1+1−h

η̃t,h(w)⊤η̃t,h(w)

= L̃T2(w) + 1
T

η⊤
(2)η(2) + 2√

T
r̃1T (w) (3.9)

where η(2) represents the vector of post-break errors,

L̃T2(w) = 1
T2

T −h∑
t=T1+1−h

(µt − µ̃t,h(w))2

4We follow the terminology used by Hansen (2010) and Cheng and Hansen (2015); in reality, as noted by Hansen (2010),
this is actually a leave-(2h − 1)-out cross-validation estimator, where the h − 1 observations within immediately before and
after time t, including the observation at time t, are all removed.
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= 1
T2

(
µ(2) − µ̃(2),h(w)

)⊤ (
µ(2) − µ̃(2),h(w)

)
(3.10)

is the post-break in-sample squared error from the leave-h-out estimator, and

r̃1T (w) = 1√
T2

(µ2 − µ̃2,h(w))⊤ η(2)

=
M∑

m=1
w(m) 1√

T2

T −h∑
t=T1+1−h

(
µt − c̃t(m)⊤θ̃t,h(m)

)
ηt+h

=
M∑

m=1
w(m)r̃1T (m). (3.11)

Thus, provided that r̃1T (m) can be ignored, the post-break cross-validation criterion is a natural estimate

of the post-break MSFE. Similar to Cheng and Hansen (2015), our strategy is to show that r̃1T (m)

is asymptotically normally distributed with zero mean, and hence can be ignored when analysing the

asymptotic properties of the cross-validation criterion. Define θ(m) =
(
CH(m)⊤CH(m)

)−1
CH(m)⊤Y as

the projection coefficient from the regression of yt+h onto cHt(m), where CH(m) = C(m)H(m) and H(m)

is a rotation matrix which suitably transforms the columns of C(m).5 This allows us to establish the

asymptotic negligibility of r̃1T (m), and therefore legitimacy of the post-break cross-validation criterion.

Proposition 3. Under Assumptions 1 to 9,

r̃1T (m) d→ S1(m) ∼ N(0, σ2Q(m)),

r̃1T (w) d→ ξ1(w) =
3M∑
m=1

w(m)S1(m),

where Q(m) = plimT →∞
1

(1−π)2
1
T (µ(2) − C2,H(m)θ(m))⊤(µ(2) − C2,H(m)θ(m)), and C2,H(m) are the post

break rows of CH(m).

Theorem 3. Under Assumptions 1 to 9, we have for any h ≥ 1, fixed M and w, and N, T → ∞,

CVh,T (w) = L̃T2(w) + 1
T2

η⊤
(2)η(2) + 2√

T2
r̃1T (w),

where r̃1T (w) d→ ξ1(w) and Eξ1(w) = 0.
5The exact form of H(m) follows similarly to the definition of H in Lemma A.1 of Bai and Ng (2006), with suitable

adjustments so that the appropriate subsets of lags of yt and ft are allowed. Specifically, H(m) is a block diagonal matrix
where the top upper left block associated with the lags of yt are identity, and the bottom right block associated with the
factors are a suitable choice of rotational basis with a valid limit, i.e. HG or HΞ,r for the pseudo-factors depending on whether
α < 1 or α = 1, and H1 for the split-sample or rotated factors.
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Theorem 3 shows that CVh,T (w) is an asymptotically unbiased estimate of L̃T2(w), the in-sample

squared loss from the leave-h-out estimator, plus σ2. This holds for any weight vector, for any set of

estimated factors considered, for any forecast horizon, and allows for conditional heteroskedasticity. The-

orem 3 mirrors and extends Theorem 2 of Cheng and Hansen (2015) to allow for the case of a structural

break in the factor structure.

4 Monte Carlo Study

4.1 Model Specification

We investigate the finite sample performance of the proposed factor estimators by themselves as well as in

conjunction with cross-validation selection and averaging. The data-generating process follows that of Bai

and Ng (2009) and Cheng and Hansen (2015), but we focus on linear models and add a structural break

in the factor structure.

We generate λ1i ∼ N(0, Ir), which can be stacked to form Λ1. We then generate the rotational and

shift break components respectively as

Z = Ir + R

N1−ν
, W = 1.5 × D

N (1−α)/2 , (4.1)

where the elements of R are drawn from a N (0r2 , Ir2), and the ith row of D is drawn as di ∼ N(0, Ir).

This allows us to generate the post-break loadings Λ2 = Λ1Z + W . The approximate factor model with a

structural break is then

xit =


λ⊤

1,ift +
√

θeit, t = 1, . . . , ⌊πT ⌋

λ⊤
2,ift +

√
θeit, t = ⌊πT ⌋ + 1, . . . , T,

(4.2)

for i = 1, . . . , N and t = 1, . . . , T . The parameter θ is set to 6 in order to calibrate the signal to noise ratio

to be 50%.

The factors and errors are generated as follows:

fk,t = ρfk,t−1 + uit, uit ∼ i.i.d.N(0, 1 − ρ2), (4.3)

eit = αei,t−1 + vit, (4.4)

where ρ ∈ {0, 0.7} captures the serial correlation in the factors, and ϵit, vit are mutually independent with
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vt = (v1,t, . . . , vN,t)⊤ being i.i.d. N(0, Ω) for t = 1, . . . , T . For t = 1, e.t = (e1,1, . . . , eN,1)⊤ is N
(
0, 1

1−α2 Ω
)

to initialise the errors at their stationary distributions. As in Bates et al. (2013) and Baltagi et al. (2017),

the scalar α captures the serial correlation in the errors, and Ωij = β|i−j| captures the cross-sectional

correlation in the errors. We consider α = β = 0.3 to allow for mild serial and cross-sectional correlation.

The true break fraction is set to 0.5 and treated as known.6

The regression equation for the forecast is

yt+h = β1ft + β2ft−1 + β3ft−2 + ηt+h (4.5)

ηt+h =
h−1∑
j=1

κjεt+h−j (4.6)

where β1 = 0.5, β2 = 0.2, β3 = 0.1, and εt ∼ N(0, 1) i.i.d. over t and is independent of vis and uis for all

t and s. For multi-step forecasting, the moving average parameter κ controls the serial dependence in the

error term, which we set to κ ∈ {0.1, 0.5, 0.9}. The sample size is N = 100 and T = (200, 500), and 1,000

simulation repetitions are conducted.

We treat the number of factors r as known. The factors are then estimated as the 1) the first r pseudo-

factors F̃P , 2) the split/post-break factors F̃S , and 3) the rotated factors F̃R. For each set of possible

factors, the set of candidate regressors for the model averaging and model selection is

Ct = (1, f̃⊤
t , . . . , f̃⊤

t−qmax
, yt, . . . , yt−pmax). (4.7)

Feasible models are constructed using all possible combinations of lags of q and p. We consider qmax =

pmax = 4, and this yields a total of 3 × (4 × 4) models in total.

We compare the root mean squared forecast error (RMSFE) of various model averaging and model

selection methods. The model averaging methods include leave-h-out cross-validation averaging (CV Ah),

Mallows model averaging (MMA), and simple averaging with equal weights. The model selection methods

include the proposed post-break leave-h-out cross-validation and Mallows selection of Cheng and Hansen

(2015).

4.2 Results

Across most parameter values and all forecast horizons, the proposed post-break leave-h-out cross-validation

averaged forecasts yield the smallest RMSFE and hence the best forecasting performance. For compact-
6Additional results for π ∈ {0.3, 0.7} are similar and omitted.
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ness, we report the results of each factor estimator and the model averaging estimators in Figure 1, with

poorly performing models omitted. Specifically, other data adaptive weighted forecasts such as Mallows

weighted forecasts offered similar, but slightly worse performance compared to post-break cross validation

weighted forecasts, whereas all model selection methods and equal weighted forecasts were dominated. The

RMSFE are normalised by the RMSFE of the infeasible forecast using the true unobserved factors.

Across all size of rotational breaks, the rotated factors and pseudo-factors exhibit near identical perfor-

mance when α < 0.5 and the shift break is small. Furthermore, when the ν < 0.5 and the rotational break is

small, the rotated factors dominate the pseudo-factors for all values of α. These two cases together demon-

strate the weak dominance of the rotated factors over the pseudo-factors. In contrast, the split-sample

method, which discards pre-break data, produces less accurate forecasts compared to the rotated factors,

unless ν is large, or α is close 1. Together, these results confirm the asymptotic results of Theorems 2 (a)

to 2 (d), where it is apparent that there is indeed no single dominating method, and forecast combination

is necessary. Indeed, our proposed CV Ah method is one such option, and always demonstrates superior

out-of-sample forecast performance compared to each individual factor estimator, confirming the validity

of Theorem 3.

Remark. The biases induced by the shift and rotational breaks may be of opposite signs, and thus cancel

each other out to some extent. Whether such cancellation occurs depends on the specific data-generating

process. This cancellation effect explains why the relative RMSE of the pseudo-factor forecast is decreasing

as α increases for ν = 1 in Figure 1.

4.3 Value of Rotated factors

One of the primary contributions of this paper is the development and detailed analysis of the set of

rotated factors F̃R. We show that these rotated factors demonstrate remarkable robustness to shift-type

breaks, mitigating the need to explicitly incorporate a break in the forecasting equation. To assess the

value of the rotated factors, we conduct an additional simulation study and compare the model averaged

forecasts constructed from two model sets: one with the full set of possible factor estimates, and one with

a model set that excludes the rotated factors F̃R, on a specification of ν = 0 and varying levels of α.

Figure 2 displays the results of this exercise. The results clearly show that, across all forecasting horizons

and regardless of the model averaging method used, excluding the rotated factors F̃R results in poorer

forecasting performance. Thus, this demonstrates the value of using the rotated factors, as they offer a

parsimonious way of adding possible robustness to shift type breaks in the factor structure.
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Figure 1: Relative RMSFE for each factor estimator and proposed post-break cross-validation weighted
forecasts, faceted by h (rows) and ν (columns), κ = 0.5 for moderate serial correlation in errors, qmax =
pmax = 4.
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5 Empirical Study

5.1 Data

We apply the proposed sets of factor estimates that deal with a possible structural break in the factor

structure in combination with the proposed cross-validation selection and averaging methods to forecast

U.S. macroeconomic series. We compare their performance with model averaging approaches that do not

consider possible structural breaks and use the principal components over the whole subsample - i.e. the

pseudo-factors; this approach corresponds to the frequentist averaging approach of Cheng and Hansen

(2015), which only averages over the number of factors and lag structure.

We consider the FRED-MD database of McCracken and Ng (2016), which consists of 1257 U.S. macroe-

conomic time series. To avoid double counting top-level aggregates, only 93 series are used to estimate the

factors, following Stock and Watson (2009). As our method only deals with one possible structural break,

we focus on the subsample(s) of surrounding the Global Financial Crisis (1984 March - 2020 February) and

COVID-19 Pandemic (2008 December - 2024 September). Specifically, which are dictated by evidence of

breaks occurring in 1984 February, 2008 November, and 2020 March, each associated with the Great Mod-

eration (Stock and Watson, 2009; Breitung and Eickmeier, 2011), Global Financial Crisis (Cheng et al.,

2016), and COVID19 Pandemic (Ng, 2021), respectively, in order to ensure that each subsample only one

break.

5.2 Methodology

Similar to Stock and Watson (2012), all forecasting models contain a fixed set of 3 lagged dependent

variables, and the models differ by the number of included factors, as well as the method of estimating the

factors. Due to the need for subsample principal components estimation and the potentially short panel in

the second subsample, the number of factors included in each model ranges from r = 0 to 5, rather than

r = 0 to r = 50 as in Stock and Watson (2012).

Given this set of models, we construct forecasts using both selection and model averaging approaches.

The averaging methods include the proposed post-break leave-h-out cross-validation, Mallows model aver-

aging following Cheng and Hansen (2015), and equal weights. The selection methods include the proposed

post-break leave-h-out cross-validation and Mallows model selection similarly following Cheng and Hansen

(2015). The out-of-sample RMSFE is calculated through an expanding window exercise.
7This number is obtained by following McCracken and Ng (2016), and suitably removing series that suffer from data

availability issues.
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Given the limited span of post-break data, we withhold only the final 60 and 12 observations (correspond

to one year and 5 years, respectively) for the Global Financial Crisis and COVID19 Pandemic subsamples,

respectively. We report the relative root mean squared error of each forecasting method relative to a direct

forecast augmented with 5 factors (DFM-5). This model is chosen based on the findings of Stock and

Watson (2012), who demonstrated that the DFM-5 model outperforms the AR model in more than 75%

of series, while shrinkage methods generally provided limited or no improve in forecasting accuracy.

We follow the methodology of Stock and Watson (2002b) in estimating the forecasting equation. Specif-

ically, we do not purge the effects of the lagged regressors on the xit series in a preliminary step as suggested

by Stock and Watson (2012). Our experience shows that this omission results in forecasts of very similar

quality, and is unnecessary.

5.3 Results

Tables 3 and 4 report the percentiles of the distributions of the one-, two- and three- month ahead ex-

panding window out-of-sample RMSFEs (relative to the DFM-5 benchmark) over the 125 series for the

proposed forecasting methods, for the Global Financial Crisis and COVID19 subsamples. These results are

noteworthy, considering that 1) Stock and Watson (2012) found that many advanced shrinkage methods

fail to outperform the DFM-5 benchmark and 2) Cheng and Hansen (2015) demonstrated that frequentist

averaging over the number of factors yields only modest gains for a minority of series. Given these estab-

lished benchmarks, the fact that our proposed methods, which explicitly account for potential breaks in

the factor structure, produce further - albeit modest - gains in forecast accuracy is a significant finding.

For both subsamples, we find that the proposed post-break cross-validation weighted forecasts generally

exhibit the least deterioration and show potential for substantial improvement over the benchmark for at

least half the series. Of all the methods, it is often within the top three methods by ranking, and still remains

competitive when it is not. Of particular note is how the cross-validated forecasts remain competitive even

for COVID19 subsample, a scenario with an extreme low number of post-break observations, and where

data-adaptive methods using the full sample such as the Mallows criterion tends to dominate. Examining

the performance of each factor estimator helps reveal the source of these gains. Generally, of the three factor

estimators, the rotated factors performs the best, followed closely by the pseudo factors, and occasionally

the split-sample factors. Indeed, among the three factor estimators, using the rotated factors alone can yield

very competitive forecasting performance - this effect is particularly evident on the COVID19 subsample. In

contrast, the split-sample factors typically offer the worst performance, representing a significant efficiency
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loss, though can occasionally offer competitive forecasts for a minority of series. This demonstrates that the

gains from the model averaged forecasts generally come from including the rotated factors; the combination

of these two strategies is then able to generally dominate the benchmark for at least half of the series, and

highlights the importance of modelling structural breaks. Similar to Stock and Watson (2012) and Cheng

and Hansen (2015), we find that most methods fail to improve upon the DFM-5 benchmark for at least

three quarters of the series in the dataset.

Tables 5 and 6 break down the results of Tables 3 and 4 by category at the median RMSE relative to

the DFM-5 benchmark. Generally, we find that the rotated factors can offer better forecasting performance

for variables in the Output and Income, Labor Market, Money and Credit, Interest Rates, and on occasion

in the Prices and Stock Market categories. These patterns are not entirely consistent across all samples

and forecasting horizons, with the split-sample strategy sometimes performing well in categories that were

particularly chaotic, such as Housing for the Global Financial Crisis subsample, and the pseudo factors

sometimes providing better performance in the COVID19 subsample, where the post-break sample is very

short. This reinforces the need for a data-adaptive method to automatically select or weight forecasts.

Unsurprisingly, the use of weighted forecasts, in particular the post-break cross-validation weighted fore-

casts, can result in more reliable forecasting performance, compared to other weighting schemes such as

equal weights and Mallows weights. This, together with evidence that they can improve performance for

a minority of series as detailed in Tables 3 and 4 further exemplifies the need for data-adaptive weighting

procedures.

Table 3: Distributions of relative RMSEs by forecasting method, relative

to DFM-5, h = 1, 2, 3, FREDMD Global Financial Crisis Subsample

(1984 March - 2020 February, 2008 November Break), outlier adjusted,

include = 99.

Percentile h = 1 h = 2 h = 3

Model 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CV Select 0.992 1.002 1.014 0.985*** 0.999 1.009 0.987 0.999 1.007

CV Weighted 0.982* 0.996** 1.006 0.984** 0.996** 1.005*** 0.982* 0.996*** 1.005

Equal Weighted 0.983** 0.995* 1.004** 0.983* 0.995* 1.003* 0.983** 0.994** 1.002*

Mallows Select 0.986*** 1.003 1.018 0.992 1.001 1.015 0.986 0.997 1.009

Mallows Weighted 0.988 0.998 1.005*** 0.988 0.998 1.005*** 0.984*** 0.997 1.005

Pseudo r 0.995 1.000 1.003* 0.996 1.000 1.003* 0.994 1.000 1.002*
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Rotated 0.986*** 0.996** 1.005*** 0.985*** 0.996** 1.009 0.985 0.993* 1.003***

Split Break 0.994 1.010 1.032 0.989 1.005 1.027 0.991 1.008 1.028

Note:

Entries are percentiles of distributions of relative RMSEs over the 125 variables being forecast, by series, at the specified

forecast horizon. RMSEs are relative to the DFM-5 forecast and calculated as an expanding pseudo out of sample

exercise. All forecasts are direct. Cross validation implemented using post break residuals. No. of asterisks denote

ranking. Pseudo r factors is obtained by averaging over the number of factors using post-break CV, and hence similar to

Cheng and Hansen (2015)’s approach, rotated and split-sample factors are also similarly averaged.

Table 4: Distributions of relative RMSEs by forecasting method, relative

to DFM-5, h = 1, 2, 3, FREDMD COVID-19 Subsample (2008 December

- 2024 September, 2020 March Break), outlier adjusted, include = 99.

Percentile h = 1 h = 2 h = 3

Model 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CV Select 0.929 0.984*** 1.019 0.948 0.997 1.013 0.962 1.000 1.025

CV Weighted 0.912* 0.970** 1.011** 0.946 0.988 1.008** 0.935 0.990 1.010***

Equal Weighted 0.924*** 0.985 1.022 0.937*** 0.976* 1.012 0.933*** 0.982** 1.011

Mallows Select 0.953 0.985 1.024 0.917* 0.982*** 1.011*** 0.930** 0.979* 1.001*

Mallows Weighted 0.955 0.993 1.023 0.938 0.981** 1.007* 0.963 0.994 1.019

Pseudo r 0.974 0.997 1.004* 0.981 1.000 1.011*** 0.962 0.994 1.003**

Rotated 0.920** 0.969* 1.015*** 0.924** 0.983 1.021 0.923* 0.984*** 1.016

Split Break 0.989 1.049 1.116 0.965 1.009 1.080 0.990 1.047 1.115

Note:

Entries are percentiles of distributions of relative RMSEs over the 125 variables being forecast, by series, at the specified

forecast horizon. RMSEs are relative to the DFM-5 forecast and calculated as an expanding pseudo out of sample exercise.

All forecasts are direct. Cross validation implemented using post break residuals. No. of asterisks denote ranking.
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Table 5: Median RMSE by forecasting method and category of series, rel-

ative to DFM-5, expanding window forecast estimates, FREDMD Global

Financial Crisis Subsample (1984 March - 2020 February, 2008 Novem-

ber Break), outlier adjusted, include = 99.

Group CV Select CV Weighted Equal Weighted Mallows Select Mallows Weighted Pseudo r Rotated Split Break

h = 1

Output and Income 0.998*** 1.001 0.993* 1.003 0.996** 1.002 0.998*** 1.004

Labor Market 1.000*** 1.002 1.000*** 1.008 0.999** 1.000*** 0.993* 1.010

Housing 1.000 0.999*** 0.997** 1.016 0.999*** 1.000 1.004 0.996*

Consumption, Orders, and Inventories 1.005 1.001 0.995*** 0.998 0.992* 1.001 0.992* 1.024

Money and Credit 1.003 1.002 0.998 0.986** 1.001 0.992*** 0.985* 1.032

Interest and Exchange Rates 1.009 0.990* 0.990* 0.995*** 0.997 1.001 0.996 1.012

Prices 1.008 0.991** 0.989* 1.003 0.997 1.000 0.994*** 1.010

Stock Market 1.008 1.015 1.015 1.005** 1.038 1.005** 1.002* 1.082

h = 2

Output and Income 0.988** 0.987* 0.988** 0.998 0.996 1.000 0.990 0.992

Labor Market 1.000** 1.001 0.999* 1.009 1.001 1.000** 1.008 1.008

Housing 1.004 0.998 0.983** 1.008 0.981* 1.001 1.008 0.985***

Consumption, Orders, and Inventories 0.987* 0.991** 1.002 0.996*** 0.999 1.000 0.996*** 1.013

Money and Credit 0.998 0.998 0.996** 0.996** 0.996** 0.998 0.995* 1.010

Interest and Exchange Rates 1.007 0.998** 0.996* 1.004 1.001 1.000*** 1.000*** 1.040

Prices 0.990* 0.991 0.990* 1.002 0.994 1.000 0.990* 0.996

Stock Market 0.993 0.993 0.992** 0.992** 0.996 0.996 0.990* 1.029

h = 3

Output and Income 1.000 0.983* 0.988*** 1.005 0.983* 1.000 0.989 0.997

Labor Market 1.001 0.995** 0.996*** 0.997 0.998 1.000 0.992* 1.008

Housing 0.990 0.977* 0.982*** 0.998 0.986 1.002 0.995 0.979**
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Consumption, Orders, and Inventories 0.987** 0.993 0.989 0.978* 0.989 0.999 0.988*** 1.009

Money and Credit 0.997 0.996*** 0.994* 0.996*** 0.995** 0.997 0.997 1.002

Interest and Exchange Rates 1.006*** 1.008 1.004** 1.013 1.006*** 1.000* 1.011 1.024

Prices 0.994* 0.998 0.995** 0.996*** 1.001 0.998 0.996*** 1.010

Stock Market 1.000 0.996*** 0.997 0.976** 1.005 0.997 0.972* 1.045

Note:

Entries are median RMSEs, relative to DFM-5, for the row category of variables. Cross validation implemented using post break residuals. No. of asterisks denote

ranking. Pseudo r factors is obtained by averaging over the number of factors using post-break CV, and hence similar to Cheng and Hansen (2015)’s approach, rotated

and split-sample factors are also similarly averaged.
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Table 6: Median RMSE by forecasting method and category of series,

relative to DFM-5, expanding window forecast estimates, FREDMD

COVID-19 Subsample (2008 December - 2024 September, 2020 March

Break), outlier adjusted, include = 99.

Group CV Select CV Weighted Equal Weighted Mallows Select Mallows Weighted Pseudo r Rotated Split Break

h = 1

Output and Income 0.968** 0.903* 0.974 0.987 1.000 1.001 0.970*** 1.123

Labor Market 0.905** 0.910*** 0.940 0.982 0.967 0.993 0.895* 1.041

Housing 0.977*** 0.974** 0.988 0.969* 0.990 0.984 1.007 1.053

Consumption, Orders, and Inventories 1.024 0.988** 1.005 0.979* 1.002 0.988** 1.005 1.104

Money and Credit 0.971* 0.985*** 1.000 0.988 0.990 0.988 0.974** 1.088

Interest and Exchange Rates 1.000 0.988 0.973** 0.980*** 0.981 1.000 0.967* 1.011

Prices 1.002** 1.009 1.021 1.014 1.008*** 0.994* 1.027 1.068

Stock Market 0.981 0.970*** 0.980 0.965** 0.971 0.994 0.960* 0.972

h = 2

Output and Income 0.993 0.991*** 0.987** 1.023 0.985* 1.011 1.012 0.991***

Labor Market 0.987 0.950*** 0.947** 0.954 0.956 0.980 0.941* 1.007

Housing 0.998 0.986 0.963** 0.928* 0.972*** 1.000 0.988 1.054

Consumption, Orders, and Inventories 0.994* 1.002 1.009 1.005 0.994* 1.001*** 1.018 1.041

Money and Credit 0.926 0.897** 0.959 0.901*** 0.926 1.000 0.895* 1.000

Interest and Exchange Rates 1.000 0.999 0.975* 0.983** 0.992 1.000 0.988*** 1.019

Prices 0.998 0.996*** 0.993** 1.000 1.004 0.996*** 0.989* 1.005

Stock Market 0.968 0.963 0.945 0.892* 0.956 0.957 0.898** 0.935***

h = 3

Output and Income 0.972** 0.975 0.963* 0.991 0.979 0.972** 0.977 1.004

Labor Market 1.005 0.929* 0.930** 0.968*** 0.977 0.976 0.995 1.053

Housing 1.000 0.998 0.985*** 0.912* 0.999 0.986 0.936** 1.120
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Consumption, Orders, and Inventories 0.996 0.998 0.994 0.984** 0.993*** 0.995 0.977* 1.106

Money and Credit 0.981 0.965** 0.966*** 0.985 0.978 0.985 0.923* 1.003

Interest and Exchange Rates 1.000 0.998 0.987*** 0.970** 0.993 1.000 0.967* 1.038

Prices 1.029 1.018 1.021 0.992* 1.036 1.003** 1.016*** 1.116

Stock Market 0.933** 0.932* 0.968 0.973 1.005 1.003 0.953*** 1.052

Note:

Entries are median RMSEs, relative to DFM-5, for the row category of variables. Cross validation implemented using post break residuals. No. of asterisks denote

ranking. Pseudo r factors is obtained by averaging over the number of factors using post-break CV, and hence similar to Cheng and Hansen (2015)’s approach, rotated

and split-sample factors are also similarly averaged.
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5.4 Robustness Check using Stock and Watson (2012) Data

As a robustness check, we also conduct a forecasting exercise for one-, two-, and four- quarter ahead

forecasts using the quarterly dataset of Stock and Watson (2012), which is also used by Cheng and Hansen

(2015). This dataset consists of 143 macroeconomic series, of which only 1088 disaggregated series are used

to estimate the factors. Due to data availability, we focus on a structural break in 1984 Q1, corresponding

to the Great Moderation, which is documented as a break by Stock and Watson (2009); Breitung and

Eickmeier (2011); Baltagi et al. (2021), among others. Our results are available in Appendix D.2, and

broadly similar to the results using FRED-MD.

6 Conclusion

This paper proposes and derives the theoretical properties of three different factor estimates in the presence

of structural breaks in the factor structure: the whole sample principal components, split-sample factors,

and our novel set of rotated factors, which are the subsample factors normalised onto the same basis. We

show that these factor estimates are respectively robust to small breaks, all large breaks at the cost of

more parameters, and large shift type types. In practice, it is difficult to know or estimate the sizes of

each type of break, and to this end we propose and prove the validity of the use of post-break leave-h-out

cross-validation selection and weighting for data driven selection and weighting. Monte Carlo simulations

support the theoretical results. An application with U.S. macroeconomic data demonstrates the potential

gains from leveraging knowledge of structural break in the dataset and highlights the poor performance of

traditional approaches, which directly allows for breaks in the forecasting equation.

8Stock and Watson (2012) mistakenly say there are 109 series.
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A Factor Model Proofs

A.1 Preliminary

We first state some preliminary results used throughout the proofs.

F ⊤e/
√

NT = Op (1) (A.1)

Λ⊤
1 e/

√
NT = Op (1) (A.2)

W ⊤e/(
√

NαT ) = Op (1) (A.3)

ee⊤/(NT ) = Op

(
δ−1

NT

)
(A.4)

F ⊤eΛ/(NT ) = Op

(
δ−2

NT

)
(A.5)

F ⊤eW/(NαT ) = Op

(
δ−2

NT

)
(A.6)

which are implied by Assumption 6 (a), Assumption 6 (d), Assumption 6 (e), Assumption 3 (e), Assump-

tion 6 (b), and Assumption 6 (c), respectively.

A.2 Pseudo-factors F̃P

To begin, we make the following expansion

F̃P VNT,r = 1
TN

XX⊤F̃P

F̃P = 1
TN

(
GrΛ⊤

1 + GpW ⊤ + e
) (

GrΛ⊤
1 + GpW ⊤ + e

)⊤
V −1

NT,r. (A.7)

Proof of Theorem 1 (a). Expanding out Equation (A.7), we have

F̃P = 1
TN

(
GrΛ⊤

1 Λ1G⊤
r F̃P + GrΛ⊤

1 e⊤F̃P + eΛ⊤
1 G⊤

r F̃P + ee⊤F̃P

+eWG⊤
p F̃P + GpW ⊤WG⊤

p F̃P + GrΛ⊤
1 WG⊤

p F̃P + GpW ⊤Λ1G⊤
r F̃P

)
V −1

NT,r. (A.8)

Substituting in HG and rearranging yields

F̃P − GrHG = 1
TN

(
GrΛ⊤

1 e⊤F̃P + eΛ1G⊤
r F̃P + ee⊤F̃P + eWG⊤

p F̃P

+GpW ⊤e⊤F̃P + GpW ⊤WG⊤
p F̃P + GrΛ⊤

1 WG⊤
p F̃P + GpW ⊤Λ1G⊤

r F̃P

)
V −1

NT,r. (A.9)
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Next, multiply both sides by 1√
T

to get

1√
T

(
F̃P − GrHG

)
= 1√

T

1
TN

(
GrΛ⊤

1 e⊤F̃P + eΛ1G⊤
r F̃P + ee⊤F̃P + eWG⊤

p F̃P

+GpW ⊤e⊤F̃P + GpW ⊤WG⊤
p F̃P + GrΛ⊤

1 WG⊤
p F̃P + GpW ⊤Λ1G⊤

r F̃P

)
V −1

NT,r

= (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8) V −1
NT,r.

Noting that V −1
NT,r = Op (1), we have

a1 = Gr√
T

Λ⊤
1 e⊤

√
TN

F̃P√
T

1√
N

= Op

( 1√
N

)
,

a2 = eΛ1√
TN

G⊤
r F̃P

T

1√
N

= Op

( 1√
N

)
,

a3 = ee⊤

NT

F̃P√
T

= Op

( 1
δNT

)
,

a4 = eW√
NαT

G⊤
p F̃P

T

√
Nα

N
= Op

(√
Nα

N

)
,

a5 = Gp√
T

W ⊤e⊤
√

NαT

F̃P√
T

√
Nα

N
= Op

(√
Nα

N

)
,

a6 = Gp√
T

W ⊤W

Nα

Nα

N

G⊤
p F̃P

T
= Op

(
Nα

N

)
,

a7 = Gr√
T

Λ⊤
1 W

N

G⊤
p F̃P

T
= Op

(√
Nα

N

)
, and

a8 = Gp√
T

W ⊤Λ1
N

Gp⊤F̃P

T
= Op

(√
Nα

N

)
.

Note that the terms a7 and a8 are not zero due to W and Λ1 not being exactly orthogonal, but are still

asymptotically negligible. Thus, term a6 characterises the dominating bias term. Collecting the dominating

terms yields

1√
T

(
F̃P − GrHG

)
= Op

( 1
δNT

)
+ Op

(
Nα

N

)
.

Squaring both sides yields the main result for the first part of this theorem.

This mean square consistency result can be used to derive a sharper bound for some of the terms in
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1√
T

(
F̃P − GrHG

)
. Specifically,

a1 = GrΛ⊤
1 e⊤

√
TN

F̃P√
T

1√
TN

= Gr√
T

Λ⊤
1 e⊤GrHG√

TN

1√
TN

+ Gr√
T

Λ⊤
1 e⊤(F̃P − GrHG)√

TN

1√
TN

= Op

( 1√
TN

)
+ Op

( 1√
NδNT

+ Nα

N
√

N

)
,

a3 = ee⊤

NT

F̃P√
T

= Op

( 1√
TN

)
+ Op

( 1√
NδNT

+ Nα

N
√

N

)
,

where the detailed derivation for a3 follows by

1
NT

√
T

∥∥∥ee⊤F̃P

∥∥∥ =

 1
T

T∑
s=1

∥∥∥∥∥ 1
TN

T∑
t=1

e⊤
s etF̃P,t

∥∥∥∥∥
21/2

,

1
TN

T∑
t=1

e⊤
s etF̃P,t = 1

TN

T∑
t=1

[
e⊤

s et − E(e⊤
s et)

]
F̃ ⊤

P,t + 1
TN

T∑
t=1

E(e⊤
s et)F̃ ⊤

P,t,

1
TN

T∑
t=1

[
e⊤

s et − E(e⊤
s et)F̃P,t

]
= 1

TN

T∑
t=1

[
e⊤

s et − E(e⊤
s et)

]
G⊤

r,tHG

+ 1
TN

T∑
t=1

[
e⊤

s et − E(e⊤
s et)

] (
F̃ ⊤

P,t − G⊤
r,tHG

)
= Op

( 1√
TN

)
+ Op

( 1√
NδNT

+ Nα

N
√

N

)
, and (A.10)

1
TN

T∑
t=1

E
[
e⊤

s et

]
F̃ ⊤

P,t = 1
T

T∑
t=1

E(e⊤
s et/N)G⊤

r,tHG + 1
T

T∑
t=1

E(e⊤
s et/N)

(
F̃ ⊤

P,t − Gr,tHG

)
= Op

( 1
T

)
+ Op

( 1√
TδNT

+ Nα

√
TN

)
. (A.11)

The remaining terms a4, a5, a6, a7, and a8 all contain W , and therefore cannot be sharpened.

For the second part of the theorem, substituting in HΞ,r, we have

1√
T

(
F̃P − GHΞ,r

)
= 1

TN
√

T

(
GrΛ⊤

1 e⊤F̃P + eΛ⊤
1 G⊤

r F̃P + ee⊤F̃P + eWG⊤
p F̃P

)
V −1

NT,r

= (a9 + a10 + a11 + a12) V −1
NT,r.

a9 = 1√
N

Gr√
T

Λ⊤
1 e⊤

√
NT

F̃P√
T

= Op

( 1√
N

)
,

a10 = eΛ√
TN

G⊤
r F̃P

T
= Op

( 1√
N

)
,

a11 = ee⊤

TN

F̃P√
T

= Op

( 1
δNT

)
,
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a12 = eW

N
√

T

G⊤
r F̃P

T
= Op

( 1√
N

)
.

Collecting the dominating terms and squaring both sides of the equation proves the result. ■

Theorem 1 (a) can then be used to prove the following lemmas for the pseudo-factors F̃P .

Lemma 1. Under Assumptions 1 to 8 and as N, T → ∞ and α < 1,

a) 1
T

(
F̃P − GrHG

)⊤
Gr = Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
, if α < 1,

b) 1
T

(
F̃P − GHΞ,r

)⊤
Gr = Op

(
1

δ2
NT

)
, if α = 1,

c) 1
T

(
F̃P − GrHG

)⊤
ei = Op

(
1

δ2
NT

)
+ Op

(
Nα

NδNT

)
, if α < 1,

d) 1
T

(
F̃P − GHΞ,r

)⊤
ei = Op

(
1

δ2
NT

)
, if α = 1.

Proof of Lemma 1 (a).

1
T

(
F̃P − GrHG

)⊤
Gr = 1

T 2N
V −1

NT,r

(
F̃ ⊤

P GrΛ⊤
1 WG⊤

p Gr + F̃ ⊤
P GpW ⊤Λ1G⊤

r Gr

+ F̃ ⊤
P GpW ⊤WG⊤

p Gr + F̃ ⊤
P eWG⊤

p Gr

+F̃ ⊤
P GpW ⊤e⊤Gr + F̃ ⊤

P ee⊤Gr + F̃ ⊤
P GrΛ⊤

1 e⊤Gr + F̃ ⊤
P eΛ1G⊤

r Gr

)
= V −1

NT,r (a13 + a14 + a15 + a16 + a17 + a18 + a19 + a20) .

Analysing each term, we have

a13 = F̃ ⊤
P Gr

T

Λ⊤
1 W

N

G⊤
p Gr

T
= Op

(√
Nα

N

)
,

a14 = F̃ ⊤
P Gp

T

W ⊤Λ
N

G⊤
r Gr

T
= Op

(√
Nα

N

)
,

a15 = F̃ ⊤
P Gp

T

W ⊤W

Nα

Nα

N

G⊤
p Gr

T
= Op

(
Nα

N

)
,

a16 = F̃P√
T

eW√
NαT

G⊤
p Gr

T

√
Nα

N
= Op

(√
Nα

N

)
,

a17 = F̃ ⊤
P Gp

T

W ⊤e⊤Gr

NαT

Nα

N
= Nα

N
Op

(
1

δ2
NT

)
,

a18 =

(
F̃P − GrHG

)⊤

√
T

ee⊤

NT

Gr√
T

+ H⊤
G G⊤

r ee⊤Gr

TNT

=
(

Op

( 1
δNT

)
+ Op

(
Nα

N

))
Op

( 1
δNT

)
+ Op

( 1
T

)
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= Op

(
1

δ2
NT

)
+ Nα

N
Op

( 1
δNT

)
+ Op

( 1
T

)
,

a19 = F̃ ⊤
P Gr

T

Λ⊤
1 e⊤Gr

TN
= Op

(
1

δ2
NT

)
, and

a20 =

(
F̃P − GrHG

)⊤

√
T

eΛ√
TN

G⊤
r Gr

T

1√
N

+ H⊤
G G⊤

r eΛ
TN

G⊤
r Gr

T

=
(

Op

( 1
δNT

)
+ Op

(
Nα

N

)) 1√
N

+ Op

(
1

δ2
NT

)

= Op

( 1√
NδNT

)
+ Op

(
Nα

N3/2

)
+ Op

(
1

δ2
NT

)
.

Collecting the dominating terms proves the lemmas. ■

Proof of Lemma 1 (b).

1
T

(
F̃P − GHΞ,r

)⊤
Gr = V −1

NT,r

1
T 2N

(
F̃ ⊤

P GpW ⊤e⊤Gr + F̃ ⊤
P ee⊤Gr + F̃ ⊤

P GrΛ⊤
1 e⊤Gr + F̃ ⊤

P eΛ1G⊤
r Gr

)
= V −1

NT,r (a21 + a22 + a23 + a24) ,

a21 = F̃ ⊤
P Gp

T

W ⊤e⊤Gr

NT
= Op

(
1

δ2
NT

)
,

a22 =

(
F̃P − GHΞ,r

)⊤

√
T

ee⊤

NT

Gr√
T

+ (GHΞ,r)⊤
√

T

ee⊤

NT

Gr√
T

= Op

( 1
δNT

)
Op

( 1
δNT

)
+ Op

( 1
T

)
,

a23 = F̃ ⊤
P Gr

T

Λ⊤
1 e⊤Gr

NT
= Op

(
1

δ2
NT

)
, and

a24 =

(
F̃P − GHΞ,r

)⊤

√
T

eΛ
N

√
T

G⊤
r Gr

T
+

H⊤
Ξ,rG⊤

r eΛ
NT

G⊤
r Gr

T

= Op

( 1
δNT

) 1√
N

+ Op

(
1

δ2
NT

)
.

∴
1
T

(
F̃P − GHΞ,r

)⊤
Gr = Op

(
1

δ2
NT

)
.

■

Proof of Lemma 1 (c).

1
T

(
F̃P − GrHG

)⊤
ei = 1

T 2N
V −1

NT,r

(
F̃ ⊤

P GrΛ⊤
1 WG⊤

p ei + F̃ ⊤
P GpW ⊤Λ1G⊤

r ei

+ F̃ ⊤
P GpW ⊤WG⊤

p ei + F̃ ⊤
P eWG⊤

p ei
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+F̃ ⊤
P GpW ⊤e⊤ei + F̃ ⊤

P ee⊤ei + F̃ ⊤
P GrΛ⊤

1 e⊤ei + F̃ ⊤
P eΛ1G⊤

r ei

)
= V −1

NT,r (a25 + a26 + a27 + a28 + a29 + a30 + a31 + a32)

These terms have the following asymptotic order:

a25 = F̃ ⊤
P Gr

T

Λ⊤
1 W

N

G⊤
p ei√
T

1√
T

= Op

(√
Nα

N
√

T

)
,

a26 = F̃ ⊤
P Gp

T

W ⊤Λ
N

G⊤
r ei√
T

1√
T

= Op

(√
Nα

N
√

T

)
,

a27 = F̃ ⊤
P Gr

T

W ⊤W

Nα

G⊤
p ei√
T

1√
T

Nα

N
= Op

(
Nα

N

) 1√
T

,

a28 = F̃ ⊤
P√
T

eW√
NαT

G⊤
p ei√
T

√
Nα

N
√

T
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(√
Nα

N
√

T

)
,

a29 = F̃ ⊤
P Gp

T

W ⊤e⊤
√

TNα

ei√
T

Nα

N
√

Nα
= Op

(√
Nα

N

)
,
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T

ee⊤

TN
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r e√
TN

e⊤ei

T
√

N

1√
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=
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Op

( 1
δNT

)
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(
Nα

N

)]
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( 1
δNT

)
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( 1
δNT

√
T

)
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(
Nα

NδNT

)
a31 = F̃ ⊤

P Gr

T

Λ⊤
1 e⊤ei

TN
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(
1

δ2
NT

)
, and

a32 =

(
F̃P − GrHG

)⊤

√
T

eΛ√
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G⊤
r ei√
T

1√
TN

+ H⊤
G GreΛ
TN

G⊤
r ei√
T

1√
T

=
(
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(
Nα

N

)
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( 1
δNT

)) 1√
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(
1

δ2
NT

)
1√
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(
Nα

N
√
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)
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( 1
δNT

√
TN

)
+ Op

(
1

δ2
NT

√
T

)
,

where a30 uses Equation (A.10). The first part of the theorem follows by collecting the dominating terms.

The second part of the theorem follows by adding and subtracting FHG

F̃P − GrHG = F̃P − FHG + (F − Gr)HG

= F̃P − FHG +

 0

F2(Ir − Z⊤)

HG

= F̃P − FHG + Gp(Ir − Z⊤)HG

F̃P − FHG = F̃P − GrHG − Gp(Ir − Z⊤)HG,
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where the result follows after taking the squared norms of both sides and diving by T . ■

Proof of Lemma 1 (d).

1
T

(
F̃P − GHΞ,r

)⊤
ei = V −1

NT

1
T 2N

(
F̃ ⊤

P GpW ⊤e⊤ei + F̃ ⊤
P ee⊤ei + F̃ ⊤

P eΛ1G⊤
r ei + F̃ ⊤

P GrΛ⊤
1 e⊤ei

)
= V −1

NT,r (a33 + a34 + a35 + a36) ,

a33 = F̃ ⊤
P Gp

T
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TN
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(
1

δ2
NT

)
,

a34 =

(
F̃P − GHΞ,r

)⊤

√
T

ee⊤

TN
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T
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H⊤
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T
√

N

1√
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)
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δNT

)
+ 1√

T
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)
,

a35 = F̃P√
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eΛ√
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G⊤
r ei√
T

1√
TN

= 1√
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a36 = F̃ ⊤
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1 e⊤ei
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,

∴
1
T

(
F̃P − GHΞ,r

)⊤
ei = Op

(
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δ2
NT

)
.

■

Additionally, Equation (A.7) allows us to study the expansion of each g̃r,t. Begin by considering

f̃P,t − H⊤
G gr,t

f̃P,t − H⊤
G gr,t = 1

NT
V −1

NT

(
F̃ ⊤

P eΛ1gr,t + F̃ ⊤
P GrΛ⊤

1 et + F̃ ⊤
P eet + F̃ ⊤

P GpW ⊤et

+F̃ ⊤
P eWgp,t + F̃ ⊤

P GpW ⊤Wgp,t + F̃ ⊤
P GpW ⊤Λ1gr,t + F̃ ⊤

P GrΛ⊤
1 Wgp,t

)
=V −1

NT (a37 + a38 + a39 + a40 + a41 + a42 + a43 + a44) .

Analysing each term, we have

a37 = F̃ ⊤
P√
T

eΛ1√
TN

grt
1√
N

=

(
F̃P − GrHG

)⊤

√
T

eΛ1√
TN

grt
1√
N

+ H⊤
G G⊤

r eΛ1
TN

grt

=
(

Op

( 1
δNT

)
+ Op

(
Nα

N

)) 1√
N

+ Op

(
1

δ2
NT

)

= Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

N

)
,
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a38 = F̃ ⊤
P Gr

T

Λ⊤
1 et

N

F̃ ⊤
P Gr

T

1
N

N∑
i=1

λ1ieit = Op

( 1√
N

)
,

a39 = F̃ ⊤
P eet

NT
= 1

TN

T∑
s=1

e⊤
t esF̂ ⊤

P,s = Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

N

)

a40 = F̃ ⊤
P Gp

T

W ⊤et

N
= F̃ ⊤

P Gp

T

√
Nα

N

1√
Nα

N∑
i=1

wieit = Op

(√
Nα

N

)
,

a41 =

(
F̃ ⊤

P − GrHG

)⊤

T

eW√
NαT

√
Nα

N
gp,t + H⊤

G G⊤
r eW√

NαT

√
Nα

N
√

T
gp,t

=
(

Op

( 1
δNT

)
+ Op

(
Nα

N

))
Op

(√
Nα

N

)
+ Op

(√
Nα

N
√

T

)
,

a42 = F̃ ⊤
P Gp

T

W ⊤W

Nα

Nα

N
gp,t = Op

(
Nα

N

)
,

a43 = F̃ ⊤
P Gp

T

W ⊤Λ1
N

gr,t = Op

(√
Nα

N

)
, and

a44 = F̃ ⊤
P Gr

T

Λ⊤
1 W

N
gp,t = Op

(√
Nα

N

)
.

Therefore, we have

f̃P,t − H⊤
G gr,t = V −1

NT

(
F̃ ⊤

P Gr

T

Λ⊤
1 eT

N
+ F̃ ⊤

P Gp

T

W ⊤W

N
gp,t

)
+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

= Op

( 1√
N

)
+ Op

(
Nα

N

)
+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
. (A.12)

Finally, note that gr,T = ZfT , and therefore implies

f̃P,T − H⊤
G fT = V −1

NT

(
F̃ ⊤

P Gr

T

Λ⊤
1 eT

N
+ F̃ ⊤

P Gp

T

W ⊤W

N
gp,T

)
− H⊤

G (I − Z)FT + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

(A.13)

Lemma 2. Under Assumptions 1 to 8,

plim HΞ,r = Q+
G,r,

where QG,r ≡ ΥGΣ−1/2
Ξ , VG is a diagonal matrix consisting of the first 2r largest eigenvalues of Σ1/2

Ξ ΣGΣ1/2
Ξ

in descending order, ΣG = plim 1
T G⊤G, and + denotes the pseudo inverse.

Proof of Lemma 2. To see this, first note that the case of α = 1 implies that 1
N Ξ⊤Ξ converges to ΣΞ which

is positive definite. This allows us to use Proposition 1 of Bai (2003) to state the following probability
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limit for the 2r pseudo-factors

G̃⊤G

T

p→ QG ≡ V
1/2

G Υ⊤
GΣ−1/2

Ξ , (A.14)

where G̃ are
√

T times the first 2r eigenvectors of XX⊤/NT , VG is a diagonal matrix consisting of the first

2r largest eigenvalues of Σ1/2
Ξ ΣGΣ1/2

Ξ in descending order, and ΣG = plim 1
T G⊤G. A slight modification of

the result in Bai (2003) via the continuous mapping theorem yields

plim F̃ ⊤
P G

T
= plim

[
Ir 0r

]
G̃⊤G

T

=
[
Ir 0r

]
QG

=
[
V

1/2
r 0r

]
ΥGΣ−1/2

Ξ ≡ QG,r, (A.15)

which is an r × 2r matrix. The limit of HΞ,r is therefore

H0,Ξ,r = plim Ξ⊤Ξ
N

G⊤F̃P

T

[Ir 0r

]
VNT,r

Ir

0r




−1

= ΣΞQ⊤
G,rV −1

r

= Σ1/2
Ξ ΥG

V
−1/2

r

0r

 = Q+
G,r, (A.16)

where Q+
G,r is the pseudo inverse of QG,r, and is a 2r × r matrix.9 ■

A.3 Split-sample Factors F̃S

Proof of Theorem 1 (b). This is simply the subsample version of Theorem 1 of Bai and Ng (2002).

Note that Theorem 1 (b) can be equivalently stated as

1√
T

∥∥∥∥∥(F̃ι − FιHι

)
−

e(ι)Λι

N

F ⊤
ι F̃ι

Tι
V −1

NT,ι

∥∥∥∥∥ = Op

(
1

δ2
NT

)
, (A.17)

due to e(ι)Λι

N
F ⊤

ι F̃ι

Tι
V −1

NT,ι being the largest term. ■

Theorem 1 (b) also implies the following lemmas.

Lemma 3. Under Assumptions 1 to 8 and as N, T → ∞, for ι = 1, 2,
9The pseudo inverse identity follows from the fact that (AB)+ = B+A+ if A has linearly independent columns and B has

linearly independent rows.
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a) 1
T

(
F̃ι − FιHι

)⊤
Fι = Op

(
1

δ2
NT

)
,

b) 1
T

(
F̃ι − FιHι

)⊤
ei,(ι) = Op

(
1

δ2
NT

)
,

where ei,(1) = (ei1, . . . , ei,⌊πT ⌋)⊤ and ei,(2) = (ei,⌊πT ⌋+1, . . . , ei,T )⊤.

Proof of Lemma 3. These are simply the subsample versions of Lemmas B.1 and B.2 of Bai (2003). ■

Additionally, by eigen-identity, we have the following expansion:

F̃2 − F2H2 = 1
T2N

(
F2Λ⊤

2 e(2)F̃2 + e(2)Λ2F ⊤
2 F̃2 + e(2)e

⊤
(2)F̃2

)
V −1

NT,2, and (A.18)

f̃2,t − H⊤
2 ft = V −1

NT,2

 F̃ ⊤
2 e⊤

(2)Λ2

T2N
ft + F̃ ⊤

2 F2
T2

Λ⊤
2 et

N
+

F̃ ⊤
2 e(2)et

T2N

 , (A.19)

where following Bai (2003) it can be shown that the 1st and 3rd terms are Op

(
1

δ2
NT

)
, and the second term

is the Op

(
1√
N

)
dominating term.

A.4 Rotated Factors F̃R

Proof of Proposition 1. Let e(1) = [e1, . . . , eT1 ]⊤ and e(2) = [e(T1+1),...,eT
]⊤ denote the partitioned errors.

Z̃ =(Λ̃⊤
1 Λ̃1)−1Λ̃⊤

1 Λ̃2

= 1
NT1T2

V −1
NT,1(F̃ ⊤

1 X1)⊤(F̃ ⊤
2 X2)

=V −1
NT,1

1
NT1T2

(
F̃ ⊤

1 F1Λ⊤
1 + F̃ ⊤

1 e1
) (

F̃ ⊤
2 F2Z⊤Λ⊤

1 + F̃ ⊤
2 F2W ⊤ + F̃ ⊤

2 e(2)
)⊤

=V −1
NT,1

1
NT1T2

(
F̃ ⊤

1 F1Λ⊤
1 e⊤

(2)F̃2 + F̃ ⊤
1 F1Λ⊤

1 WF ⊤
2 F̃2 + F̃ ⊤

1 F1Λ⊤
1 Λ1ZF ⊤

2 F̃2

+ F̃ ⊤
1 e(1)e

⊤
(2)F̃2 + F̃ ⊤

1 e(1)WF ⊤
2 F̃2 + F̃ ⊤

1 e(1)Λ1ZF ⊤
2 F̃2

)
=V −1

NT,1(Z.I + Z.II + Z.III + Z.IV + Z.V + Z.V I)

We shall see that Z.III characterises the convergence behaviour, and the remaining terms are all asymp-

totically negligible.

Z.I =
F̃ ⊤

1 F1Λ⊤
1 e⊤

(2)F̃2

NT1T2

=
F̃ ⊤

1 F1Λ⊤
1 e⊤

(2)(F̃2 − F2H2)
T1NT2

+
F̃ ⊤

1 F1Λ⊤
1 e⊤

(2)F2H2

T1NT2
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≤
∥∥∥∥∥ F̃ ⊤

1 F1
T1

∥∥∥∥∥
∥∥∥∥∥Λ⊤

1 e⊤
(2)

N
√

T2

∥∥∥∥∥
∥∥∥∥∥ F̃2 − F2H2√

T2

∥∥∥∥∥+
∥∥∥∥∥ F̃ ⊤

1 F1
T1

∥∥∥∥∥
∥∥∥∥∥Λ⊤

1 e⊤
(2)F2

NT2

∥∥∥∥∥∥H2∥

= Op(1)Op

( 1√
N

)
Op

( 1
δNT

)
+ Op(1)Op

(
1

δ2
NT

)
Op(1)

= Op

(
1

δ2
NT

)
.

Z.II = F̃ ⊤
1 F1Λ⊤

1 WF ⊤
2 F̃2

NT1T2
= F̃ ⊤

1 F1
T1

Λ⊤
1 W

N

F ⊤
2 F̃2
T2

= Op

(√
Nα

N

)
.

Z.IV =
F̃ ⊤

1 e(1)e
⊤
(2)F̃2

NT1T2

= (F̃1 − F1H1)⊤

T1

e(1)e
⊤
(2)

N

(F̃2 − F2H2)
T2

+ (F1H1)⊤

T1

e(1)e
⊤
(2)

N

(F̃2 − F2H2)
T2

+

(F̃1 − F1H1)⊤

T1

e(1)e
⊤
(2)

N

(F2H2)
T2

+ (F1H1)⊤

T1

e(1)e
⊤
(2)

N

(F2H2)
T2

= Z.IV.a + Z.IV.b + Z.IV.c + Z.IV.d.

∥Z.IV.a∥ ≤
∥∥∥∥∥(F̃1 − F1H1)√

T1

∥∥∥∥∥
∥∥∥∥∥ e(1)e

⊤
(2)√

T1
√

T2N

∥∥∥∥∥
∥∥∥∥∥(F̃2 − F2H2)√

T2

∥∥∥∥∥
= Op

( 1
δNT

)
Op

( 1
δNT

)
Op

( 1
δNT

)
= Op

(
1

δ3
NT

)
.

∥Z.IV.b∥ ≤
∥∥∥∥(F1H1)√

T1

∥∥∥∥
∥∥∥∥∥ e(1)e

⊤
(2)√

T1
√

T2N

∥∥∥∥∥
∥∥∥∥∥(F̃2 − F2H2)√

T2

∥∥∥∥∥
= Op (1) Op

( 1
δNT

)
Op

( 1
δNT

)
= Op

(
1

δ2
NT

)
.

∥Z.IV.c∥ ≤
∥∥∥∥∥(F̃1 − F1H1)√

T1

∥∥∥∥∥
∥∥∥∥∥ e(1)e

⊤
(2)√

T1
√

T2N

∥∥∥∥∥
∥∥∥∥(F2H2)√

T2

∥∥∥∥
= Op

( 1
δNT

)
Op

( 1
δNT

)
Op (1) = Op

(
1

δ2
NT

)
.

∥Z.IV.d∥ ≤ ∥H1∥
∥∥∥∥∥F ⊤

1 e⊤
(2)

T1
√

N

∥∥∥∥∥
∥∥∥∥∥ e⊤F2

T2
√

N

∥∥∥∥∥∥H2∥

= Op (1) Op

( 1√
T

)
Op

( 1√
T

)
Op (1) = Op

(
1

δ2
NT

)
.

∴ Z.IV = Op

(
1

δ2
NT

)
.

Z.V = F̃ ⊤
1

T1

e(1)W

N

F ⊤
2 F̃2
T2

≤
∥∥∥∥∥(F̃1 − F1H1)√

T1

∥∥∥∥∥
∥∥∥∥ e(1)W

Nα
√

T1

∥∥∥∥Nα

N

∥∥∥∥∥F ⊤
2 F̃2
T2

∥∥∥∥∥+ ∥H2∥
∥∥∥∥∥F ⊤

1 e(1)W

T1Nα

∥∥∥∥∥Nα

N

∥∥∥∥∥F ⊤
2 F̃2
T2

∥∥∥∥∥
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= Op

( 1
δNT

)
Op

( 1√
Nα

)
Nα

N
Op (1) + Op (1) Op

( 1√
NαT

)
Nα

N
Op (1) = Op

(
1

δ2
NT

)
.

Z.V I = F̃ ⊤
1

T1

e(1)Λ1Z

N

F ⊤
2 F̃2
T2

≤
∥∥∥∥∥(F̃1 − F1H1)√

T1

∥∥∥∥∥
∥∥∥∥∥ e(1)Λ1

N
√

T1

∥∥∥∥∥∥Z∥
∥∥∥∥∥F ⊤

2 F̃2
T2

∥∥∥∥∥+ ∥H∥
∥∥∥∥∥F ⊤

1 e(1)Λ1

T1N

∥∥∥∥∥∥Z∥
∥∥∥∥∥F ⊤

2 F̃2
T2

∥∥∥∥∥
= Op

( 1
δNT

)
Op

( 1√
N

)
Op (1) Op (1) + Op (1) Op

(
1

δ2
NT

)
Op (1) Op (1) = Op

(
1

δ2
NT

)
.

Finally, note that H2 = Λ⊤
2 Λ2
N

F ⊤
2 F̃2
T2

V −1
NT,2 and

F2H2 + F̃2 − F2H2 = F̃2

T −1
2 F̃ ⊤

2 F2H2 + T −1
2 F̃ ⊤

2 (F̃2 − F2H2) = Ir

T −1
2 F̃ ⊤

2 F2H2 + Op

(
δ−2

NT

)
= Ir

T −1
2 F̃ ⊤

2 F2 = H−1
2 + Op

(
δ−2

NT

)
.

Therefore

Z̃ = H⊤
1 ZH−⊤

2 + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

as required. ■

Proof of Theorem 1 (c). From the consistency of Z̃, it follows that

F̃2Z̃⊤ − F2Z⊤H1 = F̃2(Z̃⊤ − H−1
2 Z⊤H1) + (F̃2H−1

2 − F2)Z⊤H1,

F̃2Z̃⊤ − F2H1 = F̃2Z̃⊤ − F2Z⊤H1 + F2(Z⊤ − Ir)H1. (A.20)

Taking the squared norms of both sides and dividing by T yields the result. ■

Theorem 1 (c) additionally can be used to derive the following lemmas.10

Lemma 4. Under Assumptions 1 to 8 and as N, T → ∞:

a) 1
T

(
F̃2Z̃⊤ − F2Z⊤H1

)⊤
F2 = Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
,

10Similarly, lemmas for 1
T

(F̃2Z̃⊤ − F2H1)⊤F2 (in terms of the true factors F ) should be unnecessary.
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b) 1
T

(
F̃2Z̃⊤ − F2Z⊤H1

)⊤
ei,(2) = Op

(
1

δ2
NT

)
+ Op

(√
Nα√
T N

)
, and

c) 1
T

(
F̃2Z̃⊤ − F2H1

)⊤
F̃2 = −H⊤

1 (I − Z)H−⊤
2 + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

Proof of Lemma 4 (a).

1
T

(
F̃2Z̃⊤ − F2Z⊤H1

)⊤
F2 = 1

T

(
F̃2(Z̃⊤ − H−1

2 Z⊤H1) + (F̃2 − F2H2)H−1
2 Z⊤H1

)⊤
F2

= 1
T

(Z̃⊤ − H−1
2 Z⊤H1)⊤F̃ ⊤

2 F2 + 1
T

H⊤
1 ZH−⊤

2 (F̃2 − F2H2)⊤F2

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

■

Proof of Lemma 4 (b).

1
T

(
F̃2Z̃⊤ − F2Z⊤H1

)⊤
ei(2) = 1

T

(
F̃2(Z̃⊤ − H−1

2 Z⊤H1) + (F̃2 − F2H2)H−1
2 Z⊤H1

)⊤
ei(2)

= 1
T

(Z̃⊤ − H−1
2 Z⊤H1)⊤F̃ ⊤

2 ei(2) + 1
T

H⊤
1 ZH−⊤

2 (F̃2 − F2H2)⊤ei(2)

=
(
Z̃⊤ − H−1

2 Z⊤H1
)⊤
(

(F̃2 − F2H2)⊤ei

T
+

F ⊤
2 ei(2)√

T

1√
T

)

+ 1
T

H⊤
1 ZH−⊤

2 (F̃2 − F2H2)⊤ei(2)

=
(

Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

))(
Op

(
1

δ2
NT

)
+ Op

( 1√
T

))
+ Op

(
1

δ2
NT

)

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

√
TN

)
.

■

Proof of Lemma 4 (c).

Beginning with (F̃2Z̃⊤−F2Z⊤H1)⊤F̃2
T , we have

(F̃2Z̃⊤ − F2Z⊤H1)⊤F̃2
T

= (F̃2Z̃⊤ − F2Z⊤H1)⊤F2H2
T

+ (F̃2Z̃⊤ − F2Z⊤H1)⊤
√

T

(F̃2 − F2H2)√
T

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)
+ Op

( √
Nα

NδNT

)

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.
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Adding and subtracting terms implies

(F̃2Z̃⊤ − F2H1)⊤F̃2
T

= (F̃2Z̃⊤ − F2Z⊤H1)⊤F̃2
T

− H⊤
1 (I − Z)F ⊤

2 F̃2
T

= −H⊤
1 (I − Z)H−⊤

2 + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
,

∴
1
T

(F̃R − FH1)⊤F̃R = −H⊤
1 (I − Z)H−⊤

2 + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

■

A.5 Case of r̃ < r

We detail how our method still holds if r̃ < r, and hence allows for averaging over an unknown number

of factors, as long as this is below the true r. The proof consists of defining appropriate rotational bases

HG, HΞ, H1, H2 which comply with the existing theory, and ensuring that they have a valid probability

limit.

Suppose that the practitioner wishes to use the factor estimates with r∗ < r as a possible averaging

model. Define the F̃P,r∗ , F̃1,r∗ and F̃2,r∗ as the respective counterparts of F̃P , F̃1 and F̃2 but using r∗. We

specify counterparts of their rotational bases HG, HΞ, H1 and H2 as

HG,r∗

r×r∗
= Λ⊤

1 Λ1
N

G⊤
r F̃r∗

T
V −1

NT,r∗ , (A.21)

HΞ,r∗

2r×r∗
= Ξ⊤Ξ

N

G⊤F̃r∗

T
V −1

NT,r∗ , (A.22)

H1,r∗

r×r∗
= Λ⊤

1 Λ1
N

F ⊤
1 F̃1,r∗

T
V −1

NT,1,r∗ , (A.23)

H2,r∗

r×r∗
= Λ⊤

2 Λ2
N

F ⊤
2 F̃2,r∗

T
V −1

NT,2,r∗ , (A.24)

where VNT,r∗ , VNT,1,r∗ and VNT,2,r∗ are diagonal matrices consisting of the first r∗ eigenvalues of XX⊤/(NT ),

X1X⊤
1 /(NT1), and X2X⊤

2 /(NT2), respectively. First, note that all of these rotational bases are Op (1) be-

cause

∥HG,r∗∥ ≤
∥∥∥∥∥ F̃ ⊤

P,r∗F̃P,r∗

T

∥∥∥∥∥
1/2∥∥∥∥∥G⊤

r Gr

T

∥∥∥∥∥
1/2∥∥∥∥∥Λ⊤

1 Λ1
N

∥∥∥∥∥∥∥∥V −1
NT,r∗

∥∥∥ = Op (1) ,

∥HΞ,r∗∥ ≤
∥∥∥∥∥ F̃ ⊤

P,r∗F̃P,r∗

T

∥∥∥∥∥
1/2∥∥∥∥∥G⊤G

T

∥∥∥∥∥
1/2∥∥∥∥∥Ξ⊤Ξ

N

∥∥∥∥∥∥∥∥V −1
NT,r∗

∥∥∥ = Op (1) ,
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∥H1,r∗∥ ≤
∥∥∥∥∥ F̃ ⊤

1,r∗F̃1,r∗

T

∥∥∥∥∥
1/2∥∥∥∥∥F ⊤

1 F1
T

∥∥∥∥∥
1/2∥∥∥∥∥Λ⊤

1 Λ1
N

∥∥∥∥∥∥∥∥V −1
NT,1,r∗

∥∥∥ = Op (1) , and

∥H2,r∗∥ ≤
∥∥∥∥∥ F̃ ⊤

2,r∗F̃2,r∗

T

∥∥∥∥∥
1/2∥∥∥∥∥F ⊤

2 F2
T

∥∥∥∥∥
1/2∥∥∥∥∥Λ⊤

2 Λ2
N

∥∥∥∥∥∥∥∥V −1
NT,2,r∗

∥∥∥ = Op (1) .

Therefore, Theorem 1 (a) and Lemma 1 which are the mean square consistency results for the pseudo-

factors F̃P are all unaffected and still hold.

Next, we establish that these rotational bases have well defined probability limits. Similar to the case

of α = 1, we have

plim
F̃ ⊤

P,r∗G

T
= plim

[
Ir∗ 02r−r∗

]
G̃⊤G

T

=
[
Ir∗ 02r−r∗

]
QG

=
[
V

1/2
r∗ 02r−r∗

]
ΥGΣ−1/2

Ξ ≡ QG,r∗ ,

which is a r∗ × 2r matrix. The limit of HΞ,r∗ is therefore

H0,Ξ,r∗ = plim HΞ,r∗

= plim Ξ⊤Ξ
N

G⊤F̃P,r∗

T

[Ir∗ 02r−r∗

]
VNT,r∗

 Ir∗

02r−r∗




−1

= ΣΞQ⊤
G,r∗

 V
1/2

r∗

02r−r∗

V −1
r∗

= ΣΞΣ−1/2
Ξ ΥG

 V
1/2

r∗

02r−r∗

V −1
r∗

= Σ1/2
Ξ ΥG

V
−1/2

r∗

02r−r∗

 = Q+
G,r∗ ,

where Q+
G,r∗ is the pseudo inverse of QG,r∗ , and is a 2r × r∗ matrix. By defining Q1 = plim F̃ ⊤

1 F1
T and

Q2 = plim F̃ ⊤
2 F2
T , we can derive the limits of H1,r∗ and H2,r∗ as Q1,r∗ and Q2,r∗ in a similar way.

By Theorem 1 of Bai and Ng (2002), we have

∥∥∥F̃1,r∗ − F1H1,r∗

∥∥∥2
= Op

(
1

δ2
NT

)
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∥∥∥F̃2,r∗ − F2H2,r∗

∥∥∥2
= Op

(
1

δ2
NT

)

which shows that Theorem 1 (b) containing the mean square consistency of the split-sample factors F̃S are

unaffected. Lemma 3 corresponds to Lemmas B.1 and B.2 of Bai (2003) by applying Theorem 1 (b), and

therefore also holds.

Similarly, the proof of Proposition 1 still holds by simply replacing all cases of F̃1 −F1H1 and F̃2 −F2H2

with F̃1 − F1H1,r∗ and F̃2 − F2H2,r∗ , respectively. The final step of Proposition 1 requires establishing that
F̃ ⊤

2 F2
T = H+

2,r∗ , where the result is now stated in terms of a pseudo inverse due to H2 being a rectangular

r × r∗ matrix. This can holds because

F2H2,r∗ + F̃2,r∗ − F2H2,r∗ = F̃2,r∗

1
T2

F̃ ⊤
2,r∗F2H2,r∗ + 1

T2
F̃ ⊤

2,r∗

(
F̃2,r∗ − F2H2,r∗

)
= Ir∗

1
T2

F̃2,r∗F2 = H+
2 + Op

(
1

δ2
NT

)
,

where 1
T2

F̃ ⊤
2,r∗

(
F̃2,r∗ − F2H2,r∗

)
= Op

(
1

δ2
NT

)
is implied by

∥∥∥F̃2,r∗ − F2H2,r∗

∥∥∥2
= Op

(
1

δ2
NT

)
.

A.6 Changing r

We detail how our decomposition can be extended to the allow for disappearing factors, and hence a

change in the number of factors. Note that the case of an emerging factor can always be parameterised in

by reversing the pre- and post-break samples, and it thus suffices to focus on the case of a disappearing

factor.

Existing work tends to parameterise a disappearing factor by allowing for a singular Z, (e.g. Han and

Inoue, 2015; Baltagi et al., 2017; Bai et al., 2024). However, these approaches work by using the pseudo-

factors - the case of split-sample estimation is more difficult. The main issue is to ensure that H2 has valid

limiting behaviour - once this is done, the proofs for the split-sample factors and rotated factors can follow

on without major adjustments.

Without loss of generality, suppose that the r − r2th factors disappear. To avoid Λ2 not being of full

column rank, we instead parameterise Λ2 as an N × (r − r2) matrix:

Λ2 = = Λ1Z0 + W0, (A.25)
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where Z0 is an r × (r − r2) rectangular matrix, and W is N × (r − r2). This allows us to write

X2 = F2Λ⊤
2 + e(2)

= F2

Ir−r2

0


(Λ1Z + W )

Ir−r2

0




⊤

+ e(2)

= F2,r−r2 (Λ1Z0 + W0)⊤ + e(2), (A.26)

which expresses the post-break data as a factor structure with r − r2 factors. We can therefore apply the

usual framework of Bai (2003) and use

H2,r−r2 = Λ⊤
2 Λ2
N

F ⊤
2,r−r2F̃2,r−r2

T2
V −1

NT,2,r−r2
(A.27)

where we can use the first r − r2 post-break factors denoted by F̃2,r−r2 . All of the above quantities exhibit

full rank, and hence H2,r−r2 is an (r − r2) × (r − r2) square matrix.

Lemma 5. Under Assumptions 1 to 8, as N, T → ∞

a) 1
T

∥∥∥F̃2,r−r2 − F2,r−r2H2,r−r2

∥∥∥2
= Op

(
1

δ2
NT

)
,

b) 1
T

(
F̃2,r−r2 − F2,r−r2H2,r−r2

)⊤
F2,r−r2 = Op

(
1

δ2
NT

)

c) 1
T

(
F̃2,r−r2 − F2,r−r2H2,r−r2

)⊤
ei,(2) = Op

(
1

δ2
NT

)
Proof of Lemma 5. These correspond to Theorem of Bai and Ng (2002) and Lemmas B.1 and B.2 of Bai

(2003). ■

Lemma 5 can also be used to prove analogous results for the rotated factors, where Z̃ is now an

r × (r − r2) matrix.

Lemma 6. Under Assumptions 1 to 8, as N, T → ∞

a) Z̃ = H⊤
1 Z0H−⊤

2,r−1 + Op

(
1

δ2
NT

)
,

b) 1
T

∥∥∥F̃2,r−r2Z̃⊤ − F2Z⊤
0 H1

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
,

1
T

∥∥∥F̃2,r−r2Z̃⊤ − F2H1
∥∥∥2

= Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
+ Op (1), and

c) 1
T

(
F̃2,r−r2 − F2,r−r2Z⊤

0 H1
)⊤

F2,r−r2 = Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
,

1
T

(
F̃2,r−r2 − F2,r−r2Z⊤

0 H1
)⊤

ei(2) = Op

(
1

δ2
NT

)
+ Op

(√
Nα

N
√

T

)
.
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Proof of Lemma 6. Lemmas 6 (a) to 6 (c) are analogous to Proposition 1, Theorem 1 (c), and Lemma 4,

and are all proved in a similar way. The Op (1) term in Lemma 6 (b) corresponds follows because the

definition of Z0 implies that ν = 1. ■

A.7 Mis-specified Break Fraction

We show how our method can adapt to a possible mis-specified break fraction π∗, enabling a practitioner

to average over a finite number of candidate breaks.

Consistent Estimation of the Break Fraction

We first detail the rates and conditions regarding estimation of π. The least-squares estimator of Bai et al.

(2020) is consistent for the break index k = ⌊πT ⌋ for α > 0. Therefore, for any α > 0 the break fraction

can be treated as known, regardless of ν.

Rotational breaks are more difficult to deal with. When ν < 0.5 and α = 0, the impact of the rotational

break is small enough to not impact the forecasting coefficients. Therefore, even though these breaks cannot

be consistently estimated, they are safe to ignore. When ν > 0.5, this constitutes a large enough break

in the coefficients that can be consistently estimated. To see this, the results of Bai (1997) show that the

break fraction can still be consistently estimated as long as the break is large enough. In our context, this

would correspond to N2−2ν , implying an error of o(N) for the break index.

The case of ν = 0.5 and α = 0 represents a rare case where the break fraction cannot be consistently

estimated, and also coincides to the case where no one estimation method for the factors clearly dominates

any of the others.

Therefore, it is only in the rare cases of ν < 0.5, α = 0, and ν = 0.5, α = 0 where the break fraction

cannot be estimated - and only the latter case could be of interest to a practitioner. We work around this

by showing that the split-sample factors F̃S and rotated factors F̃R still exhibit proper limiting behaviour

when the break is possibly mis-specified. This allows the practitioner to additionally select and/or average

over a finite number of “candidate” break fractions for forecasting. The use of model averaging using

cross-validation can be justified by showing analogous results, and requires the careful specification of a

rotational matrix that has clearly defined limits.

Note that the pseudo-factors F̃P do not use any partitioning of the data, and thus the following results

are only necessary for analysing the split-sample factors F̃S and rotated factors F̃R. Let X∗
1 and X∗

2 denote

the T ∗
1 = ⌊π∗T ⌋ × N and ⌊(1 − π∗)T × N⌋ partitions defined by π∗, F̃ ∗

1 and F̃ ∗
2 the respective estimates of

the factors using principal components, and Λ̃∗
1 and Λ̃∗

2 the respective factor loadings as estimated by least
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squares.

Case 1: Break Fraction is under-estimated π∗ < π.

In this case, write the X matrix as

X =


F ∗

11 0

F ∗
12 0

F2Z⊤ F2


Λ⊤

1

W ⊤

+ e,

where F ∗
11 is ⌊π∗T ⌋ × r = T ∗

1 × r, and F ∗
12 is ⌊(1 − π∗)T ⌋ × r.

Therefore, using π∗ to partition X implies the following equivalent representation theorem:

X =

X∗
1

X∗
2



=

F ∗
11 0

G∗
r G∗

p


Λ⊤

1

W ⊤

+ e

=

F ∗
11 0

G∗


Λ⊤

1

W ⊤

+ e,

where G∗
r and G∗ are both T ∗

2 in length. Thus, the case of using a mis-specified π∗ < π can be analysed as

the case of a factor structure with no break F ∗
11, and pseudo-factors G∗

r or G∗ =
[
G∗

r G∗
p

]
after the break.

We specify the following rotational bases

H∗
1 = Λ⊤

1 Λ1
N

F ∗⊤
11 F̃ ∗

1
T ∗

1
V ∗−1

NT,1,

H∗
2,r = Λ⊤

1 Λ1
N

G∗⊤
r F̃ ∗

2
T ∗

2
V ∗−1

NT,2, and

H∗
2,Ξ = Ξ⊤Ξ

N

G∗⊤F̃ ∗
2

T ∗
2

V ∗−1
NT,2,

where V ∗
NT,1 and V ∗

NT,2 are diagonal matrices consisting of the first r eigenvalues of X∗
1 X∗⊤

1 /(NT ∗
1 ) and

X∗
2 X∗⊤

2 /(NT ∗
2 ).

This allows us to state the following consistency result for the split-sample factors F̃ ∗
S .

Lemma 7. Under Assumptions 1 to 8, as N, T → ∞

a) 1
T

∥∥∥F̃ ∗
1 − F ∗

11H∗
1

∥∥∥2
= Op

(
1

δ2
NT

)
,
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b) 1
T

∥∥∥F̃ ∗
2 − G∗

rH∗
2,r

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
, for α < 1,

1
T

∥∥∥F̃ ∗
2 − G∗H∗

2,Ξ

∥∥∥2
= Op

(
1

δ2
NT

)
for α = 1.

c) 1
T

(
F̃ ∗

1 − F ∗
11H∗

1,r

)⊤
F ∗

11 = Op

(
1

δ2
NT

)
,

1
T

(
F̃ ∗

2 − G∗
rH∗

2,r

)⊤
G∗

r = Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
if α < 1,

1
T

(
F̃ ∗

2 − G∗H∗
2,Ξ

)⊤
G∗ = Op

(
1

δ2
NT

)
if α = 1,

d) 1
T

(
F̃ ∗

1 − F ∗
11H∗

1,r

)⊤
ei(1) = Op

(
1

δ2
NT

)
,

1
T

(
F̃ ∗

2 − G∗
rH∗

2,r

)⊤
ei(2) = Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

T

)
if α < 1,

1
T

(
F̃ ∗

2 − G∗H∗
2,Ξ

)⊤
ei(2) = Op

(
1

δ2
NT

)
if α = 1.

Lemma 7 (a) follows from Theorem 1 of Bai and Ng (2002). Lemma 7 (b) follows by applying the results

of Theorem 1 (a) to the post-break factors. Lemmas 7 (c) and 7 (d) are the counterparts to Lemma 3.

Lemma 7 also allows us to state the following lemmas.

Next, we focus on the rotated factors. Lemma 7 also allows us to state the following results for the

rotated factors F̃ ∗
R =

[
F̃ ∗⊤

1 , Z∗F̃ ∗⊤
2

]⊤
, where Z̃∗ =

(
Λ̃∗⊤

1 Λ̃∗
1

)−1
Λ̃∗⊤

1 Λ̃∗
2.

Lemma 8. Under Assumptions 1 to 8, as N, T → ∞

a) Z̃∗ =


H∗⊤

1 H∗−⊤
2,r + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
, α < 1,

H∗⊤
1

G∗⊤
r F̃ ∗

2
T ∗

2
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)
, α = 1;

b) 1
T

∥∥∥F̃ ∗
2 Z̃∗⊤ − G∗

rH∗
1,r

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
if α < 1,

1
T

∥∥∥∥F̃ ∗
2 Z̃∗⊤ − G∗H2,ΞF̃ ∗⊤

2
T2

G∗
rH∗

1

∥∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
Nα

N2

)
if α = 1.

Lemma 8 (a) shows that, in the case of a mis-specified break fraction, the estimated rotation Z̃∗ can still

be used as a way to join the pre- and post-break factors together. Lemma 8 (a) shows the corresponding

mean square consistency results for the rotated factors, which can be used to formulate their limiting

behaviour. Because F̃ ∗
2 is estimating a set of pseudo-factors, both sets of results need to be stated for

α < 1 and α = 1 separately.

Proof of Lemma 8. We first prove the consistency of Z̃∗. Expanding out Z̃∗ we have

Z̃∗ =
(
Λ̃∗⊤

1 Λ̃∗
1

)−1
Λ̃∗⊤

1 Λ̃∗
2

= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗⊤

1 X∗
1

) (
F̃ ∗⊤

2 X∗
2

)⊤
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= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗⊤

1 F ∗
11Λ⊤

1 + F̃ ∗⊤
1 e(1)

) (
F̃ ∗

2 G∗Ξ⊤ + F̃ ∗
2 e(2)

)⊤

= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗⊤

1 F ∗
11Λ⊤

1 ΞG∗⊤F̃ ∗
2 + F̃ ∗⊤

1 F ∗
11Λ⊤

1 e⊤
(2)F̃

∗
2 + F̃ ∗⊤

1 e(1)Ξ∗G∗⊤F̃ ∗
2 + F̃ ∗⊤

1 e(1)e
⊤
(2)F̃

∗
2

)
= 1

NT ∗
1 T ∗

2
V ∗−1

NT,1

(
F̃ ∗⊤

1 F ∗
11Λ⊤

1 Λ1G∗⊤
r F̃ ∗

2 + F̃ ∗⊤
1 F ∗

11Λ⊤
1 WG∗⊤

p F̃ ∗
2 + F̃ ∗⊤

1 F ∗
11Λ⊤

1 e⊤
(2)F̃

∗
2

+F̃ ∗⊤
1 e(1)Λ1G∗⊤

r F̃ ∗
2 + F̃ ∗⊤

1 e(1)WG∗⊤
p F̃ ∗

2 + F̃ ∗⊤
1 e(1)e

⊤
(2)F̃

∗
2

)
= (Z.i + Z.ii + Z.iii + Z.iv + Z.v + Z.vi),

where the first term is the main dominating term, and Z.ii, Z.iii, Z.iv and Z.v are asymptotically negligible

because

Z.ii = V ∗−1
NT,1

F̃ ∗⊤
1 F ∗

11
T ∗

1

Λ⊤
1 W

N

G∗⊤
p F̃2

T ∗
2

= Op

(√
Nα

N

)
,

Z.iii = V ∗−1
NT,1

F̃ ∗⊤
1 F ∗

11
T ∗

1

Λ⊤
1 e⊤

(2)G
∗
2H∗

2,Ξ

NT ∗
2

+ F̃ ∗⊤
1√
T ∗

1

F ∗
11Λ⊤

1 e⊤
(2)

N
√

T ∗
2

F̃ ∗
2 − G∗

2H∗
2,Ξ√

T ∗
2

= Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
= Op

(
1

δ2
NT

)
,

Z.iv = V ∗−1
NT,1

(
F̃ ∗

1 − F ∗
11H∗

1

)⊤√
T ∗

1

e(1)Λ1

N
√

T ∗
1

G∗⊤
r F̃ ∗

2
T ∗

2
+ (F ∗

11H∗
1 )⊤√

T ∗
1

e(1)Λ1

N
√

T ∗
1

G∗⊤
r F̃ ∗

2
T ∗

2

= Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
= Op

(
1

δ2
NT

)
,

Z.v = V ∗−1
NT,1

(
F̃ ∗

1 − F ∗
11H∗

1

)⊤√
T ∗

1

e(1)W√
NαT ∗

1

G∗⊤
p F̃ ∗

2
T ∗

2

√
Nα

N
+ (F ∗

11H∗
1 )⊤√

T ∗
1

e(1)WG∗⊤
p√

T ∗
2 Nα

F̃ ∗
2√
T ∗

2

√
Nα

N

1√
T ∗

1

= Op

( 1
δNT

) √
Nα

N
+ Op

( 1√
T

) √
Nα

N
= Op

(
1

δ2
NT

)
.

The term Z.vi can be further decomposed as

Z.vi = V ∗−1
NT,1

(
F̃ ∗

1 − F ∗
11H∗

1

)⊤√
T ∗

1

e(1)e
⊤
(2)

N
√

T ∗
1 T ∗

2

(
F̃ ∗

2 − G∗H∗
2,Ξ

)
√

T ∗
2

+ V ∗−1
NT,1

(F ∗
11H∗

1 )⊤√
T ∗

1

e(1)e
⊤
(2)

N
√

T ∗
1 T ∗

2

(
F̃ ∗

2 − G∗H∗
2,Ξ

)
√

T ∗
2

+ V ∗−1
NT,1

(
F̃ ∗

1 − F ∗
11H∗

1

)⊤√
T ∗

1

e(1)e
⊤
(2)

N
√

T ∗
1 T ∗

2

G∗H∗
2,Ξ√

T ∗
2

+ V ∗−1
NT,1

(F ∗
11H∗

1 )⊤√
T ∗

1

e(1)e
⊤
(2)

N
√

T ∗
1 T ∗

2

G∗H∗
2,Ξ√

T ∗
2

= Op

(
1

δ3
NT

)
+ Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
,

= Op

(
1

δ2
NT

)
.
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To analyse the leading term Z.i, note that for the case of α < 1, H∗
2,r is an r × r invertible matrix, and

therefore

GrH∗
2,r + F̃ ∗

2 − GrH∗
2,r = F̃ ∗

2

1
T ∗

2
F̃ ∗⊤

2 GrH∗
2,r = Ir − 1

T ∗
2

F̃ ∗⊤
2

(
F̃ ∗

2 − GrH∗
2,r

)
F̃ ∗⊤

2 Gr

T ∗
2

= H∗−1
2,r + Op

(
Nα

N

)
+ Op

(
1

δ2
NT

)
,

where the last line uses Lemma 7 (c). Using the definition of H∗
1 , it follows that

Z̃∗ = H∗⊤
1

G⊤
r F̃ ∗

2
T ∗

2
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)

= H∗⊤
1 H∗−⊤

2,r + Op

(
Nα

N

)
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)
,

where the first and last lines can be used to establish the results for F̃ ∗
2 Z̃∗⊤ for α = 1 and α < 1, respectively.

For α < 1, we have

1√
T

(
F̃ ∗

2 Z̃∗⊤ − G∗
rH∗

1

)
= 1√

T
F̃ ∗

2

(
Z̃∗⊤ − H∗−1

2,r H∗
1

)
+ 1√

T

(
F̃ ∗

2 H∗−1
2,r − G∗

r

)
H1,

= Op

(
Nα

N

)
+ Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)
+ Op

( 1
δNT

)
+ Op

(
Nα

N

)
.

For the case of α = 1, F̃ ∗
2 is consistent for G∗H∗

2,Ξ, where the rotation matrix is 2r × r and therefore

does not have an inverse. Our consistency result is, therefore,

1√
T

(
F̃ ∗

2 Z̃∗⊤ − GH2,ΞF̃ ∗⊤
2

T2
G∗

rH∗
1

)
= 1√

T
GH2,Ξ

(
Z̃∗⊤ − F̃ ∗⊤

2 GrH1
T

)
+ 1√

T

(
F̃ ∗

2 − GH2,Ξ
)

Z̃∗⊤ + Op

(
1

δ2
NT

)

= Op

(√
Nα

N

)
+ Op

(
1

δ2
NT

)
.

In both cases, collecting the dominating terms and squaring both sides yields the result. ■
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Case 2: Break Fraction is over-estimated π∗ > π.

In this case, consider the following partition for X:

X =


F1 0

F ∗
21Z⊤ F ∗

21

F ∗
22Z⊤ F ∗

22


Λ⊤

1

W ⊤

+ e.

This implies the following equivalent representation theorem:

X =

X∗
1

X∗
2



=

 G∗
r G∗

p

F ∗
22Z⊤ F ∗

22


Λ⊤

1

W ⊤

+ e

=

G∗
1

G∗
2


Λ⊤

1

W ⊤

+ e.

Note that in this parameterisation, G∗
2Ξ⊤ = F ∗

22(Λ1Z + W )⊤ = F ∗
22Λ2. This allows us to specify the

following rotational bases

H∗
1,r = Λ⊤

1 Λ1
N

G∗⊤
r F̃ ∗

1
T1

V ∗−1
NT,1,

H∗
1,Ξ = Ξ⊤Ξ

N

G∗⊤
1 F̃ ∗

1
T ∗

1
V ∗−1

NT,1,

H∗
2 = Λ⊤

2 Λ2
N

F ∗⊤
22 F̃ ∗

2
T ∗

2
V ∗−1

NT,2.

where V ∗
NT,1 and V ∗

NT,2 are diagonal matrices consisting of the first r eigenvalues of X∗
1 X∗⊤

1 /(NT ∗
1 ) and

X∗
2 X∗⊤

2 /(NT ∗
2 ).

Lemma 9. Under Assumptions 1 to 8 and as N, T → ∞

a) 1
T

∥∥∥F̃ ∗
1 − G∗

rH∗
1,r

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
,

1
T

∥∥∥F̃ ∗
1 − G∗H∗

1,Ξ

∥∥∥2
= Op

(
1

δ2
NT

)
,

1
T

∥∥∥F̃ ∗
2 − F ∗

22H∗
2

∥∥∥2
= Op

(
1

δ2
NT

)
,

b) 1
T

(
F̃ ∗

1 − G∗
rH∗

1,r

)⊤
G∗

r = Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
for α < 1,

1
T

(
F̃ ∗

1 − G∗H∗
1,Ξ

)⊤
G∗

r = Op

(
1

δ2
NT

)
for α = 1,
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1
T

(
F̃ ∗

2 − F ∗
22H∗

2

)⊤
F ∗

22 = Op

(
1

δ2
NT

)
,

c) 1
T

(
F̃ ∗

1 − G∗
rH∗

1,r

)⊤
ei(1) = Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

T

)
for α < 1,

1
T

(
F̃ ∗

1 − G∗H∗
1,Ξ

)⊤
ei(2) = Op

(
1

δ2
NT

)
for α = 1,

1
T

(
F̃ ∗

2 − F ∗
22H∗

2

)⊤
ei(2) = Op

(
1

δ2
NT

)
.

Proof of Lemma 9. Lemma 9 (a) corresponds to Theorem 1 (a) and Theorem 1 (b) and can be proven

similarly. Lemmas 9 (b) and 9 (c) correspond to Lemmas 1 and 3 and can be proven similarly. ■

Lemma 9 similarly allows us to present the following results for the rotated factors.

Lemma 10. Under Assumptions 1 to 8 and as N, T → ∞

a) Z̃∗ =


H∗⊤

1,r ZH∗−⊤
2,r + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
, α < 1,

H∗⊤
1,ΞH∗−⊤

2,Ξ + Op

(
1

δ2
NT

)
, α = 1.

b) 1
T

∥∥∥F̃ ∗
2 Z̃∗⊤ − F ∗

22Z⊤H∗
1,r

∥∥∥2
= Op

(
1

δ2
NT

)
+ Op

(
N2α

N2

)
for α < 1,

1
T

∥∥∥F̃ ∗
2 Z̃∗⊤ − G∗

2H∗
1,Ξ

∥∥∥2
= Op

(
1

δ2
NT

)
for α = 1.

c) 1
T

(
F̃ ∗

2 Z̃∗⊤ − F ∗
22H∗

2

)⊤
F ∗

22 = Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
for α < 1,

1
T

(
F̃ ∗

2 Z̃∗⊤ − G∗
2H∗

2

)⊤
G∗

2 = Op

(
1

δ2
NT

)
for α = 1.

d) 1
T

(
F̃ ∗

2 Z̃∗⊤ − F ∗
22H∗

2

)⊤
ei(2) = Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

T

)
for α < 1,

1
T

(
F̃ ∗

2 Z̃∗⊤ − G∗
2H∗

2

)⊤
ei(2) = Op

(
1

δ2
NT

)
for α = 1.

The rotated factors work by rotating the post-break factors onto the same rotational basis as the pre-

break factors. In the case of an over-estimated break fraction π∗ > π, this causes the estimated pre-break

factors to exhibit a pseudo-factor representation, and similar to the case of analysing the pseudo-factors,

care needs to be taken in specifying a rotational basis with proper limiting behaviour. To achieve this,

Lemma 10 is stated separately for the cases of α < 1 and α = 1.

Proof of Lemma 10. We first prove the consistency result for Z̃∗.

Z̃∗ =
(
Λ̃∗⊤

1 Λ̃∗
1

)−1
Λ̃∗⊤

1 Λ̃∗
2

= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗⊤

1 X∗
1

) (
F̃ ∗⊤

2 X∗
2

)⊤
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= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗

1 G∗
1Ξ⊤ + F̃ ∗

1 e(1)
) (

F̃ ∗⊤
2 G∗

2Ξ + F̃ ∗⊤
2 e(2)

)⊤

= 1
NT ∗

1 T ∗
2

V ∗−1
NT,1

(
F̃ ∗

1 G∗
1Ξ⊤ΞG∗⊤

2 F̃ ∗
2 + F̃ ∗

1 G∗
1Ξ⊤e⊤

(2)F̃
∗
2 + F̃ ∗

1 e⊤
(1)ΞG∗⊤

2 F̃ ∗
2 + F̃ ∗

1 e⊤
(1)e(e)F̃

∗
2

)
= Z.vi + Z.vii + Z.viii + Z.ix.

The the last three terms are asymptotically negligible because

Z.vii = V ∗−1
NT,1

F̃ ∗⊤
1 G∗

T ∗
1

Ξ⊤e⊤
(2)F̃

∗
2

NT ∗
2

,

= V ∗−1
NT,1

(
F̃ ∗⊤

1 G∗
r

T ∗
1

Λ⊤
1 e⊤

(2)F
∗
22H∗

2

NT ∗
2

+ F̃ ∗⊤
1 G∗

r

T ∗
1

Λ⊤
1 e⊤

(2)

N
√

T ∗
2

(F̃ ∗
2 − F ∗

22H∗
2 )√

T ∗
2

+
F̃ ∗⊤

1 G∗
p

T ∗
1

W ⊤e⊤
(2)F

∗
22H∗

2

NαT ∗
2

Nα

N
+

F̃ ∗⊤
1 G∗

p

T ∗
1

W ⊤e⊤
(2)√

NαT ∗
2

(F̃ ∗
2 − F ∗

22H∗
2 )√

T ∗
2

√
Nα

N

)
,

= Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
Nα

N
+ Op

(
1

δ2
NT

) √
Nα

N

= Op

(
1

δ2
NT

)
,

Z.ix = V ∗−1
NT,1

F̃ ∗⊤
1√
T ∗

1

e(1)Ξ
N
√

T ∗
1

G∗⊤
2 F̃ ∗

2
T ∗

2

= V ∗−1
NT,1


(
F̃1 − G∗

1H∗
1,Ξ

)⊤√
T ∗

1

e(1)Λ1

N
√

T ∗
1

G∗⊤
r F̃ ∗

2
T ∗

2
+

(
G∗

1H∗
1,Ξ

)⊤√
T ∗

1

e(1)Λ1

N
√

T ∗
1

G∗⊤
r F̃ ∗

2
T ∗

2

+

(
F̃1 − G∗

1H∗
1,Ξ

)⊤√
T ∗

1

e(1)W

Nα
√

T ∗
1

G∗⊤
r F̃ ∗

2
T ∗

2

Nα

N
+

(
G∗

1H∗
1,Ξ

)⊤√
T ∗

1

e(1)W√
NαT ∗

1

G∗⊤
r F̃ ∗

2
T ∗

2

√
Nα

N


= Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
+ Op

(
1

δ2
NT

)
Nα

N
+ Op

(
1

δ2
NT

) √
Nα

N

= Op

(
1

δ2
NT

)
,

Z.x = Op

(
1

δ2
NT

)
,

where the negligibility for Z.x can be proven in a similar way.

The remaining Z.vi is the leading term, whose behaviour depends on α. When α < 1, we have

Z.vi = V ∗−1
NT,1

(
F̃ ∗⊤

1 G∗
r

T ∗
1

Λ⊤
1 Λ1Z

N

F ∗⊤
22 F̃ ∗

2
T ∗

2
+

F̃ ∗⊤
1 G∗

p

T ∗
1

W ⊤Λ1Z

N

F ∗⊤
22 F̃ ∗

2
T ∗

2

+ F̃ ∗⊤
1 G∗

r

T ∗
1

Λ⊤
1 W

N

F ∗⊤
22 F̃ ∗

2
T ∗

2
+

F̃ ∗⊤
1 G∗

p

T ∗
1

W ⊤W

N

F ∗⊤
22 F̃ ∗

2
T ∗

2

)
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= H∗⊤
1,r ZH∗−⊤

2 + Op

(√
Nα

N

)
+ Op

(√
Nα

N

)
+ Op

(
Nα

N

)
,

where the last line uses 1
T F ∗⊤

22 F̃ ∗
2 = H∗−⊤

2 , because

F ∗
22H∗

2 + F̃ ∗
2 − F ∗

22H∗
2 = F̃ ∗

2

1
T ∗

2
F̃ ∗⊤

2 F ∗
22H∗

2 + 1
T ∗

2
F̃ ∗⊤

2

(
F̃ ∗

2 − F ∗
22H∗

2

)
= Ir

1
T ∗

2
F ∗⊤

22 F̃ ∗
2 = H∗−⊤

2 + Op

(
1

δ2
NT

)
.

For the case of α = 1, the leading term Z.vi.I can instead be characterised using H∗
1,Ξ

Z.vi.I = H∗⊤
1,Ξ

G∗⊤
2 F̃ ∗

2
T ∗

2

= H∗⊤
1,Ξ

Z

Ir

 F ∗⊤
22 F̃2
T ∗

2

= H∗⊤
1,Ξ

Z

Ir

H∗−⊤
2 + Op

(
1

δ2
NT

)
,

which uses the fact that G∗
2 =

[
F ∗

22Z⊤ F ∗
22

]
=
[
Z⊤ Ir

]
F ∗

22. Collecting the dominating terms for the

two cases yields the consistency result for Z̃∗.

For the α < 1, the mean square consistency for F̃ ∗
2 Z̃∗⊤ follows as

1√
T

(
F̃ ∗

2 Z̃∗⊤ − F ∗
22Z⊤H∗⊤

1,r

)
= 1√

T
F̃ ∗

2

(
Z̃∗⊤ − H∗−1

2 Z⊤H1,r

)
+ 1√

T

(
F̃ ∗

2 − F ∗
22H∗

2

)
H∗−1

2 Z⊤H1,r

= Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
+ Op

( 1
δNT

)
.

For α = 1 we have

1√
T

(
F̃ ∗

2 Z̃∗⊤ − F ∗
22

[
Z⊤ Ir

]
H∗

1,Ξ

)
= 1√

T
F̃ ∗

2

(
Z̃∗⊤ − H∗−1

2

[
Z⊤ Ir

]
H1,Ξ

)
+ 1√

T

(
F̃ ∗

2 − F ∗
22H∗

2

)
H∗−1

2

[
Z⊤ Ir

]
H1,Ξ

1√
T

(
F̃ ∗

2 Z̃∗⊤ − G∗
2H∗

1,Ξ

)
= Op

(
1

δ2
NT

)
+ Op

( 1
δNT

)
.

For both cases, taking the squared norm of both sides yields the result.
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Lemmas 10 (c) and 10 (d) can be proven in a similar way to the pseudo-factors for the cases α < 1 and

α = 1. ■

B Bias Variance Trade-off Proofs

B.1 Out-of-sample Asymptotic Expansions

In this subsection, we provide the precise asymptotic expansions for the out-of-sample forecasts. In what

follows, we focus on the case of a DGP that contains only one lag of both the factor and yt. That is,

Y = [y1, . . . , yT ] is regressed on C = [c1−h, . . . , cT −h]⊤, where ct =
[
f⊤

t , z⊤
t

]⊤
are the infeasible regressors,

with zt = (1, yt, . . . , yt−p), with corresponding forecasting coefficients θ =
(
β⊤, δ⊤

)⊤
. The case of more

lags follow by suitably redefining these quantities at the cost of more complex notation. Therefore, our

results hold without loss of generality.

B.1.1 Pseudo-factors

In the case where the pseudo-factors F̃P are used, the regressor matrix is C̃P = [c̃P,1−h, . . . , c̃P,T −h]⊤. Be-

cause F̃P is an estimate of GrHG, we define cGr,t = [g⊤
r,t, z⊤

t ]⊤, its matrix counterpart CGr = [cGr,1−h, . . . , cGr,T −h]⊤,

and the corresponding rotation matrix HP = diag(HG, I), which rotates the columns of the factors but

leaves the observed regressors unchanged.

The least squares estimate of the forecast coefficient and resulting forecast µ̃P,T is then

θ̂P =
(
C̃⊤

P C̃P

)−1
C̃⊤

P Y,

µ̃P,T = c̃⊤
P,T θ̂P .

The out-of-sample forecast error is then

c⊤
T θ − c̃⊤

P,T θ̂P =
[
c⊤

T θ − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

]
− c̃⊤

P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η, (B.1)

which are similar to the bias and variance terms in a typical decomposition of mean squared error. We

therefore interpret and refer to them as such.

The bias term can be expanded as

c⊤
T θ − c̃⊤

P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ
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=(c⊤
T HP − c̃⊤

P,T )H−1
P θ − c̃⊤

P,t

(
C̃⊤

P C̃P

)−1
C̃⊤

P C + c̃⊤
P,T H−1

P θ

=[f⊤
T HG − f̃⊤

P,T , 0]

H−1
G β

δ

+ c̃⊤
P,T

[
I −

(
C̃⊤

P C̃P

)−1
C̃⊤

P CHP

]
H−1

P θ

=
(
f⊤

T HG − f̃⊤
P,T

)
H−1

G β + c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P

(
C̃P − CHP

)
H−1

P θ

= −
(
f̃⊤

P,T − f⊤
T HG

)
H−1

G β + c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P

(
C̃P − CHP

)
H−1

P θ.

By the expansion in the proof of Lemma 1 (a) (replacing CHP with GrHG), we have

(F̃P − GrHG, 0)⊤C̃P

T
=

V −1
NT

F̃ ⊤
P Gp

T
W ⊤W

N

G⊤
p C̃P

T

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

Consequently, (F̃P −F HG,0)⊤C̃P

T follows by adding and subtracting

(F̃P − FHG, 0)⊤C̃P

T
=

 (GrHG−F HG)⊤C̃P

T + V −1
NT

F̃ ⊤
P Gp

T
W ⊤W

N

G⊤
p C̃P

T

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

=

−H⊤
G (I−Z)G⊤

p C̃P

T + V −1
NT

F̃ ⊤
P Gp

T
W ⊤W

N

G⊤
p C̃P

T

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
,

which expresses this substitution in terms of the rotational break and shift break.

Substituting these expansions and the expression for f̃⊤
P,T − f⊤

T HG from Equation (A.13), we have

c⊤
T θ − c̃⊤

T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

=
(

−
(

V −1
NT

F̃ ⊤
P Gr

T

Λ⊤
1 eT

N
+ V −1

NT

F̃ ⊤
P Gp

T

W ⊤W

N
fT − H⊤

G (I − Z)fT

)
+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

))⊤

H−1
G β

+ c̃⊤
P,T

(
C̃⊤

P C̃P

)−1


−H⊤

G (I−Z)G⊤
p C̃P

T + V −1
NT

F̃ ⊤
P Gp

T
W ⊤W

N

G⊤
p C̃P

T

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
⊤

H−1
P θ

=

−
(

V −1
NT

F̃ ⊤
P Gr

T

Λ⊤
1 eT

N
+ V −1

NT

F̃ ⊤
P Gp

T

W ⊤W

N
fT − H⊤

G (I − Z)fT

)
− H⊤

G (I − Z)
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T

+V −1
NT

F̃ ⊤
P Gp

T

W ⊤W

N

G⊤
P F̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)⊤

H−1
G β

=

H⊤
G (I − Z)

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T
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−V −1
NT

F̃ ⊤
P Gp

T

W ⊤W

N

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T

⊤

H−1
G β

− e⊤
T Λ1
N

(
Λ⊤

1 Λ1
N

)−1

β + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
,

=

(I − Z) −
(

Λ⊤
1 Λ1
N

)−1(
F̃ ⊤

P Gr

T

)−1
F̃ ⊤

P Gp

T

W ⊤W

N

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T


−
(

Λ⊤
1 Λ1
N

)−1 Λ⊤
1 eT

N

⊤

β + Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
, (B.2)

where the last two lines use the definition of H−1
G . This expresses the bias in terms of the rotational break

(I − Z), shift break (W ⊤W ), and inherent estimation error in the factors.

Remark. The two bias terms may cancel each other out if α and ν are equal, and the two bias terms

(I − Z) and −
(

Λ⊤
1 Λ1
N

)−1 (
F̃ ⊤

P Gr

T

)−1
F̃ ⊤

P Gp

T
W ⊤W

N have opposite signs. In finite sample, depending on the

DGP, we can expect this bias cancellation to occur for similar values of α and ν when both are ≥ 0.5 (i.e.

when the bias terms are large enough to affect forecasting performance).

To show that the variance of the pseudo-factor forecasts are Op

(
1
T

)
, it suffices to establish that

c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η = Op

(
1√
T

)
. Substituting, we have

1√
T

c̃⊤
P,T

(
C̃⊤

P C̃P

T

)−1
C̃⊤

P η√
T

= 1√
T

c̃⊤
P,T

(
C̃⊤

P C̃P

T

)−1
H⊤

P C⊤
Gr

η
√

T
+

(
C̃P − CGr HP

)⊤
η

√
T


= 1√

T

c̃⊤
P,T

(
C̃⊤

P C̃P

T

)−1
H⊤

P C⊤
Gr

η
√

T
+ Op

(√
T

δ2
NT

)
+ Op

(
Nα

N

)
= 1√

T

[
H⊤

P cGr,t + (c̃P,T − H⊤
P cGr,t)

]⊤
H−⊤

P

(
C⊤

Gr
CGr

T

)−1
C⊤

Gr
η

√
T

+ 1√
T

[
Op

(√
T

δ2
NT

)
+ Op

(
Nα

N

)]

= 1√
T

cGr,t

(
C⊤

Gr
CGr

T

)−1
C⊤

Gr
η

√
T

+ Op

(
1

δ2
NT

)
+ Op

(
Nα

N
√

T

)
= Op

( 1√
T

)
, (B.3)

where the third line uses Lemma 1 (c), the fourth uses Theorem 1 (a), and the fifth uses Equation (A.12).

B.1.2 Split-sample Factors

When the split-sample factors are used, this is algebraically equivalent to using only the post-break data.

That is, the post-break observations of Y , denoted as Y2, are fitted using the regressor matrix C̃2 =
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[c̃2,T1−h, . . . , c̃2,T −h]⊤, where c̃2,t =
[
f̃⊤

2,t, z⊤
t

]⊤
. Because F̃2 is an estimate of F2H2, we define c2,t =[

f⊤
t , z⊤

t

]⊤
, its matrix counterpart C2 = [c2,T1−h, . . . , c2,T −h]⊤, and its corresponding rotation matrix HS =

diag(H2, I), which rotates the columns of the factor but leaves the observed regressors unchanged.

The least squares estimate of the forecast coefficient and resulting forecast µ̃S,T is then

θ̂S =
(
C̃⊤

2 C̃2
)−1

C̃⊤
2 Y,

µ̃S,T = c̃⊤
S,T θ̂S .

Decomposing the out-of-sample forecast error as a terms related to the bias and variance yields

c⊤
T θ − c̃⊤

S,T θ̂S =
[
c⊤

T θ − c̃⊤
S,T

(
C̃⊤

2 C̃2
)−1

C̃⊤
2 C2θ

]
− c̃⊤

S,T

(
C̃⊤

2 C̃2
)−1

C̃⊤
2 η(2). (B.4)

To analyse the bias term, we use the fact that c̃S,T = c̃2,T , and c̃2,T − H⊤
S cT =

f̃2,T − H⊤
2 fT

0

, where

the first r rows follow the expansion in Equation (A.18). Therefore, for the bias term, we have

c⊤
T θ − c̃⊤

2,T

(
C̃⊤

2 C̃2
)−1

C̃⊤
2 C2θ

=

H⊤
S cT − H⊤

S

C⊤
2 C̃2
T2

(
C̃⊤

2 C̃2
T2

)−1

c̃2,T

⊤

H−1
S θ

=
[
f⊤

T H2 − f̃⊤
2,t 0

] H−1
2 β

δ

+

c̃⊤
2,T

(
C̃⊤

2 C̃2
T2

)−1 C̃⊤
2

(
C̃2 − C2HS

)
T2

H−1
S θ

=
(

−V −1
NT,2

F̃ ⊤
2 F2
T2

Λ⊤
2 eT

N

)⊤

H−1
2 β + Op

(
1

δ2
NT

)

=−e⊤
T Λ2
N

(
Λ⊤

2 Λ2
N

)−1

β + Op

(
1

δ2
NT

)
,

where the last line uses the definition of H2.

For the variance, we have

1√
T2

c̃⊤
2,T

(
C̃⊤

2 C̃2
T2

)−1
C̃⊤

S η(2)√
T2

= 1√
T2

c̃⊤
2,T

(
C̃⊤

2 C̃2
T2

)−1
H⊤

2 C⊤
2 η(2)√
T2

+

(
C̃2 − C2HS

)⊤
η(2)

√
T2
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= 1√
T2

c̃⊤
2,T

(
C̃⊤

2 C̃2
T2

)−1 [
H⊤

2 C⊤
2 η(2)√
T2

+ Op

(√
T

δ2
NT

)]

= 1√
T2

(
H⊤

S cT + (c̃2,T − H⊤
S cT )

)⊤
H−⊤

S

(
C⊤

2 C2
T2

)−1
H⊤

2 C⊤
2 η(2)√
T2

+ Op

(
1

δ2
NT

)

= 1√
T2

cT

(
C⊤

2 C2
T2

)−1
H⊤

2 C⊤
2 η(2)√
T2

+ Op

(
1

δ2
NT

)
= Op

( 1√
T

)
, (B.5)

where the third line follows from Lemma 3 (b), the fourth line follows from Lemma 3 (a), and the fifth line

follows from Equation (A.18).

B.1.3 Rotated Factors

When the rotated factors F̃R are used, the regressor matrix is C̃R = [c̃R,1−h, . . . , c̃R,T −h]⊤. Because the

rotated factors F̃R are an estimate of GrH1, we use cGr,t =
[
g⊤

r,t, z⊤
t

]⊤
and its matrix counterpart CGr

as with the pseudo-factors, and the corresponding rotation matrix HR = diag(H1, I), which rotates the

columns of the factors but leaves the observed regressors unchanged.

The least squares estimate of the forecast coefficient and resulting forecast µ̃R,T is then

θ̂R =
(
C̃⊤

R C̃R

)−1
C̃⊤

R Y,

µ̃R,T = c̃⊤
R,T θ̂R.

Decomposing the out-of-sample forecast error as terms related to the bias and variance yields

c⊤
T θ − c̃⊤

R,T θ̂R =
[
c⊤

T θ − c̃⊤
R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R Cθ

]
− c̃⊤

R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R η. (B.6)

For the bias term, we have

c⊤
T θ − (c̃R,T )⊤

(
C̃⊤

R C̃R

)−1
C̃⊤

R Cθ

=
(

H⊤
R cT − c̃R,T +

(
C̃R − CHR

)⊤
C̃R

(
C̃⊤

R C̃R

)−1
c̃R,T

)⊤
H−1

R θ

= −
[
f̃⊤

R,T − f⊤
T H1, 0

] H−1
1 β

δ

+
[(

C̃R − CHR

)⊤
C̃R

(
C̃⊤

R C̃R

)−1
c̃R,T

]⊤
H−1

R θ.

This requires expressions for Z̃f̃2,T − H⊤
1 ZfT and 1

T (C̃R − CHR)⊤C̃R. Using the consistency of Z̃ from
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Proposition 1 and the expansion for f̃2,T − H⊤
2 fT from Equation (A.18), it follows that

Z̃f̃2,T − H⊤
1 ZfT = H⊤

1 ZH−⊤
2 V −1

NT,2
F̃ ⊤

2 F2
T

Λ⊤
2 eT

N
+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

= H⊤
1 Z

(
Λ⊤

2 Λ2
N

)−1 Λ⊤
2 eT

N
+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
, (B.7)

where the second line follows by the definition of H−⊤
2 .

Next, we analyse 1
T

(
C̃R − CHR

)⊤
C̃R, where by using Lemmas 3 and 4 we have

1
T

(
C̃R − CHR

)⊤
C̃R =

 1
T

(
F̃R − FH1

)⊤
C̃R

0



=

 1
T

(
F̃1 − F1H1

)⊤
C̃R,1 + 1

T

(
F̃2Z̃⊤ − F2H1

)⊤
C̃R,2

0



=

 1
T

(
F̃2Z̃⊤ − F2Z⊤H1

)⊤
C̃R,2 − 1

T H⊤
1 (I − Z)F ⊤

2 C̃R,2

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

=

−H⊤
1 (I − Z)F ⊤

2 C̃R,2
T

0

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

Therefore, the expression for the bias can be expressed as

c⊤
T θ − (c̃R,T )⊤

(
C̃⊤

R C̃R

)−1
C̃⊤

R Cθ

=

H⊤
1 (I − Z)fT − H⊤

1 Z

(
Λ⊤

2 Λ2
N

)−1 Λ⊤
2 eT

N
− H⊤

1 (I − Z) F̃ ⊤
2 C̃R,2

T

(
C̃⊤

R C̃R

T

)−1

c̃R,T

⊤

H−1
1 β

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

=

H⊤
1 (I − Z)

fT − F̃ ⊤
2 C̃R,2

T

(
C̃⊤

R C̃R

T

)−1

c̃R,T

− H⊤
1 Z

(
Λ⊤

2 Λ2
N

)−1 Λ⊤
2 eT

N

⊤

H−1
1 β

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
.

Note that for α < 1

Z

(
Λ⊤

2 Λ2
N

)−1 Λ⊤
1 eT

N
= Z

(Z⊤Λ⊤
1 Λ1Z

N

)−1

+ Op

(
Nα

N

)(Z⊤Λ⊤
1 eT

N
+ W ⊤eT

N

)
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=
(

Λ⊤
1 Λ1
N

)−1 Λ⊤
1 eT

N
+ Op

(√
Nα

N

)
.

Thus, comparing with Equation (B.2), the rotated factors are much more robust to shift type breaks.

To show that the variance term of the rotated factors is Op

(
1
T

)
, it suffices to show that c̃⊤

R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R η

is Op

(
1√
T

)
. Substituting each term, we have

1√
T

c̃⊤
R,T

(
C̃⊤

R C̃R

T

)−1
C̃⊤

R η√
T

= 1√
T

c̃⊤
R,T

(
C̃⊤

R C̃R

T

)−1
H⊤

R C⊤
Gr

η
√

T
+

(
C̃R − CGr HR

)⊤
η

√
T


= 1√

T
c̃⊤

R,T

(
C̃⊤

R C̃R

T

)−1 [
H⊤

R C⊤
Gr

η
√

T
+ Op

(√
T

δ2
NT

)
+ Op

(√
Nα

N

)]

= 1√
T

[
H⊤

R cGr,T + (c̃R,T − H⊤
R cGr,t)

]⊤
H−⊤

R

(
C⊤

Gr
CGr

T

)−1
C⊤

Gr
η

√
T

+ 1√
T

(
Op

(√
T

δ2
NT

)
+ Op

(√
Nα

N

))

= 1√
T

cGr,T

(
C⊤

Gr
CGr

T

)−1
C⊤

Gr
η

√
T

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N
√

T

)
= Op

( 1√
T

)
,

where the third line uses Lemma 4 (b), the fourth uses Theorem 1 (c), and the fifth line uses Equation (B.7).

B.2 Small Shift Break α < 0.5

Proof of Theorem 2 (a) - Asymptotic Equivalence of Forecasts Generated by Pseudo and Rotated Factors.

We show that the pseudo-factors and rotated factors produce asymptotically identical forecasts for α < 1/2.

Taking the difference between the rotated and pseudo-factor forecasts, we have

c̃⊤
R,T θ̂R − c̃⊤

P,T θ̂P

=c̃⊤
R,T

(
C̃⊤

R C̃P

)−1
C̃⊤

R Cθ − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ + c̃⊤
R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R η − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η. (B.8)

We first focus on the difference between the bias terms. Substituting and expanding, we have

c̃⊤
R,T

(
C̃⊤

R C̃P

)−1
C̃⊤

R Cθ − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

=c̃⊤
R,T

(
C⊤

R CR

)−1
C⊤

R Cθ − c̃⊤
P,T

(
C⊤

P CP

)−1
C⊤

P Cθ + c̃⊤
R,T

[(
C̃⊤

R C̃R

)−1
C̃⊤

R C −
(
C⊤

R CR

)−1
C⊤

R C

]
θ

− c̃⊤
P,T

[(
C̃⊤

P C̃P

)−1
C̃⊤

P C −
(
C⊤

P CP

)−1
C⊤

P C

]
θ
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=c̃⊤
R,T

(
C⊤

R CR

)−1
C⊤

R Cθ − c̃⊤
P,T

(
C⊤

P CP

)−1
C⊤

P Cθ + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
+ Op

(√
Nα

N

)

=
(
c̃⊤

R,T H−1
R − c̃P,T H−1

P

) (
C⊤

Gr
CGr

)−1
C⊤

Gr
Cθ + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
+ Op

(√
Nα

N

)
.

Next, we check the term
(
c̃⊤

R,T H−1
R − c̃P,T H−1

P

)
.

Based on the expansions of f̃R,T and f̃P,T in Equation (A.13) and Equation (B.7), respectively, the first

r entries of the row vector
(
c̃⊤

R,T H−1
R − c̃P,T H−1

P

)
are

(
f̃⊤

R,T H−1
1 − f⊤

T Z
)

−
(
f̃⊤

P,T H−1
G − f⊤

T Z
)

=f̃⊤
2,T

(
Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

))
+ e⊤

T Λ2
N

(
Λ⊤

2 Λ2
N

)−1

Z⊤ − e⊤
T Λ1
N

(
Λ⊤

1 Λ1
N

)−1

− f⊤
T

W ⊤W

N

G⊤
p F̃P

T

(
G⊤

r F̃P

T

)−1(Λ⊤
1 Λ1
N

)−1

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)

= − f⊤
T

W ⊤W

N

G⊤
p F̃P

T

(
G⊤

r F̃P

T

)−1(Λ⊤
1 Λ1
N

)−1

+ Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
. (B.9)

Thus, combined with the fact that the remaining terms of
(
c̃⊤

R,T H−1
R − c̃P,T H−1

P

)
are 0, we therefore have

for α < 1/2:

c̃⊤
R,T

(
C̃⊤

R C̃P

)−1
C̃⊤

R Cθ − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ = op

(
N−1/2

)
. (B.10)

Next, we focus on the difference between the variance terms of the pseudo- and rotated factors. Simi-

larly, the variance terms of the out-of-sample prediction errors can be written as

c̃⊤
R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R η − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η

=c̃⊤
R,T H−1

R

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η − c̃⊤

P,T H−1
P

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η + c̃⊤

R,T

[(
C̃⊤

R C̃R

)−1
C̃⊤

R η − H−1
R

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η

]
− c̃⊤

P,T

[(
C̃⊤

P C̃P

)−1
C̃⊤

P η − H−1
P

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η

]
=c̃⊤

R,T H−1
R

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η − c̃⊤

P,T H−1
P

(
C⊤

Gr
CGr

)−1
C⊤

Gr
η + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
+ Op

(√
Nα

N

)

=
(
c̃⊤

R,T H−1
R − c̃⊤

P,T H−1
P

) (
C⊤

Gr
CGr

)−1
C⊤

Gr
η + Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
+ Op

(√
Nα

N

)

=op

(
N−1/2

)
, (B.11)

for α < 1/2. Additionally, the variance terms of both methods are Op
(
T −1) because both c̃⊤

R,T

(
C̃⊤

R C̃R

)−1
C̃⊤

R η
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and c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η are Op

(
T −1/2

)
.

Combining the bias and variance terms, we have

c̃⊤
R,T θ̂R − c̃⊤

P,T θ̂P = op

(
N−1/2

)
. (B.12)

Therefore, the difference c̃⊤
R,T θ̂R − c̃⊤

P,T θ̂P is asymptotically negligible relative to the estimation errors

c̃⊤
R,T θ̂R − c⊤

T θ and c̃⊤
P,T θ̂P − c⊤

T θ. This shows the asymptotic equivalence. ■

B.3 Small Rotational Break ν ∈ [0, 0.5)

Proof of Theorem 2 (b). We organise the proof in the cases of α ∈ [0, 0.5), α = 0.5, α ∈ (0.5, 1) and α = 1.

B.3.1 ν ∈ [0, 0.5) and α ∈ [0, 0.5)

Both the pseudo- and rotated methods have the same leading term of order Op

(
1
N

)
in their expansions

for the squared bias term, i.e. respectively,
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=
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−

(
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N

)−1 Λ⊤
1 eT

N

⊤

β
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2
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)
,
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β
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2

+ op

( 1
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)
.

The split-sample method has the following expansion for the squared bias term:

∥∥∥∥c⊤
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(
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2 C̃2
)−1
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∥∥∥∥2
=

∥∥∥∥∥∥−e⊤
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N
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β
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2

+ op

( 1
N

)
.

Thus, the leading term for the squared bias terms of all methods are identical.

For the variance terms, recall that the leading terms for the variance of the pseudo-factors and rotated
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factors are the same for α < 1. For ν < 1, we have

1√
T

c⊤
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(
C⊤

Gr
CGr

T

)−1
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√
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T

c⊤
Gr,T

(
C⊤
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T
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T

)
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( 1√
T

)

= 1√
T

c⊤
T

(
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)−1
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T
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(
Nν
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)
+ Op

( 1√
T

)
. (B.13)

Therefore, by studying the difference between the leading terms in the variance terms for the pseudo-factor

method and the split-sample method, we obtain

Asy. var

η⊤
(2)C2

T2

(
C⊤

2 C2
T2

)−1

cT

− Asy. var

η⊤C

T

(
C⊤C

T

)−1

cT


= 1

T

1
1 − π

c⊤
T Σ−1

CCΩCC,ηΣ−1
CCcT − 1

T
c⊤

T Σ−1
CCΩCC,ηΣ−1

CCcT

= 1
T

π

1 − π
c⊤

T Σ−1
CCΩCC,ηΣ−1

CCcT > 0, (B.14)

where C⊤C
T

p→ ΣCC . Hence, the split-sample method suffers from a larger variance compared to the pseudo-

and rotated factor methods. Combined with the result that its squared bias is of the same asymptotic order,

this implies that the split-sample factors are inferior, so the split-sample method is therefore dominated

by the other two methods in terms of MSFE for α < 1/2 and ν < 1/2.

B.3.2 ν ∈ [0, 0.5) and α = 0.5

The expansion for the rotated factors remains the same as Appendix B.3.1. The pseudo-factors however,

are subject to an additional bias term due to the shift break, requiring us to analyse the out-of-sample

squared forecast error in more detail. Squaring Equation (B.1) yields

∥∥∥c⊤
T θ − c̃⊤

P,T θ̂
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=
∥∥∥∥c⊤

T θ − c̃⊤
P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

∥∥∥∥2
+
∥∥∥∥c̃⊤

P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P η
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[
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(
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P C̃P

)−1
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P Cθ − c⊤
T θ

]
(B.15)

=bias2 + var + cross.
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Focusing on the squared bias term, by Equation (B.2), we have
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. (B.16)

The stochastic order of the first two squared terms are both Op

(
1
N

)
. Next, we analyse the behaviour of

the cross term between these two biases by multiplying by N

β⊤
(

Λ⊤
1 Λ1
N

)−1 Λ⊤
1 eT√
N

fT −
G⊤

p C̃P
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(
G⊤

r F̃P
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)−1(Λ⊤
1 Λ1
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)−1

β.

Noticing that all terms except for Λ⊤
1 eT f⊤

T√
N

and Λ⊤
1 eT c̃⊤

P,T√
N

converge to constants, it thus suffices to analyse

these terms in detail. For the latter, using the fact that c̃P,T = cP,T + (c̃P,T − cGr,T ), where the second

term in the brackets is a vector with f̃P,T − HGZ⊤fT in its first r columns given by Equation (A.12) and

0 in its remaining columns, we have

Λ⊤
1 eT c̃⊤
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1 eT√
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T
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T V −1
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0
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(
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)
,
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f⊤
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)
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1
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)
.
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Assumption 4 ensures Λ⊤
1 eT√

N
and fT are independent, meaning that Λ⊤

1 eT√
N

f⊤
T converges to ϵ1, a zero mean

random variable. Next, recalling that zT contains a constant term and yT , decompose Λ⊤
1 eT√

N
yT into

yT

∑
i∈S

λ1ieiT√
N

+ yT

∑
i̸∈S

λ1ieiT√
N

. By Assumption 9 (e), the first term is Op

(
N−1/2

)
due to the finite cardi-

nality of S, and the second term converges to ϵ2, a zero mean random variable. Together, these imply that

the cross term between these biases is asymptotically zero mean, and can therefore be ignored.

In this scenario, the rotated method has a smaller squared bias term than the pseudo-factor method.

The split-sample method is inferior to the rotated method following the same argument. The ranking

between the split-sample method and the pseudo method depends on a bias-variance trade-off which are

of identical asymptotic order. Specifically, the variance of the split-sample method exceeds that of the

pseudo-factor method by an ≍p N−1 as detailed in Equation (B.14), whereas the pseudo-factor method

suffers from an additional squared bias

∥∥∥∥∥∥∥
(Λ⊤

1 Λ1
N
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T

)−1
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⊤

β

∥∥∥∥∥∥∥
2

≍p N−1.

The specific ranking between the pseudo- and split-sample factors, therefore, depends on the specific DGP.

B.3.3 ν ∈ [0, 0.5) and α ∈ (0.5, 1)

When α ∈ (1/2, 1), the expansions for the rotated factors remains the same. However, the shift bias term∥∥∥∥∥∥
[(

Λ⊤
1 Λ1
N

)−1 (
F̃ ⊤

P Gr

T
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β
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2

for the pseudo-factors becomes

the leading term, and therefore

∥µT +h − µ̂P,T +h∥2/∥µT +h − µ̂R,T +h∥2 → ∞,

∥µT +h − µ̂P,T +h∥2/∥µT +h − µ̂S,T +h∥2 → ∞,

as N, T → ∞. The split-sample method still remains inferior to the rotated method following the same

argument.
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B.3.4 ν ∈ [0, 0.5) and α = 1

If α = 1, then

∥∥∥∥∥∥
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≍p 1, so the

pseudo-factor method is the least effective. The squared bias of the rotated factor method is
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.

The squared bias of the split-sample method is

∥∥∥∥c⊤
T θ − c̃⊤

2,T

(
C̃⊤

2 C̃2
)−1
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2
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)
.

The variance terms of the rotated and split-sample methods are both ≍p N−1. Thus, the specific ranking

of the rotated and split-sample methods depends on the DGP. ■

B.4 Moderate Rotational Break ν = 0.5

Proof of Theorem 2 (c) - moderate rotational breaks ν = 0.5. We organise the proof in the cases of α ∈

[0, 0.5), α = 0.5, α ∈ (0.5, 1) and α = 1.

B.4.1 ν = 0.5 and α ∈ [0, 0.5)

In the case of a small shift break, the pseudo- and rotated-factor methods are asymptotically identical in

light of Theorem 2 (a). The presence of a moderate rotational break results in the pseudo- and rotated-

factor methods having extra squared bias term of order Op
(
N−1). To compare with the split-sample

method, recall that the variance term of the split-sample method exceeds that of the pseudo- and rotated

factor methods by a Op
(
N−1) term. Therefore, the ranking between the pseudo-, rotated, and split-

sample methods depends on the bias-variance trade-off determined by the bias terms magnitude of relative

to T −1tr(ΩΣ−1
CC)π/(1 − π), which depends on the specific DGP.
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B.4.2 ν = 0.5 and α = 0.5

The rotated-factor method has a squared bias term of Op
(
N−1) due to the presence of a moderate rotational

break, identical to the case in Appendix B.4.1. The squared bias of the pseudo-factor method is

∥∥∥∥c⊤
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)
. (B.17)

The comparison between the pseudo-, rotated, and split-sample methods follow a similar bias-variance

argument employed in Appendix B.4.1. That is, their relative rankings depend on the specific DGP.

B.4.3 ν = 0.5 and α ∈ (0.5, 1)

If α ∈ (0.5, 1], then the bias term caused by the shift break becomes the leading term for the pseudo-factors.

Since ∥µT +h − µ̂S,T +h∥2 ≍p N−1 and ∥µT +h − µ̂R,T +h∥2 ≍p N−1, we have

∥µT +h − µ̂P,T +h∥2/∥µT +h − µ̂R,T +h∥2 → ∞,

∥µT +h − µ̂P,T +h∥2/∥µT +h − µ̂S,T +h∥2 → ∞,

as N, T → ∞. The ranking between the rotated and split-sample factors depends on a similar bias-variance

trade-off.

B.4.4 ν = 0.5 and α = 1

If α = 1, then
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= ≍p N−1.
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The split-sample method has the same asymptotic order for its squared bias term, and both the rotated and

split-sample methods have variance terms that are ≍p N−1. Therefore, the ranking between the rotated

and split-sample factors depends on the DGP. ■

B.5 Large Rotational Break ν ∈ (0.5, 1]

Proof of Theorem 2 (d) - large rotational breaks ν > 0.5. We organise the proof by the cases of ν < 1 and

ν = 1, and within those two cases by increasing values of α.

B.5.1 ν ∈ (0.5, 1) and α < ν

The squared bias of the pseudo-factor method is
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≍p N2ν−2. (B.18)

The squared bias of the rotated factor method is

∥∥∥∥c⊤
T θ − (c̃R,T )⊤

(
C̃⊤

R C̃R

)−1
C̃⊤

R Cθ

∥∥∥∥2
=

∥∥∥∥∥∥∥
(I − Z)

fT − F̃ ⊤
2 C̃R,2

T

(
C̃⊤

R C̃R

T

)−1

c̃R,T

⊤

β

∥∥∥∥∥∥∥
2

+ op

(
N2ν−2

)

≍p N2ν−2. (B.19)

Both of these converge to zero at a slower rate than
∥∥∥c⊤

T θ − c̃⊤
S,T θ̂S

∥∥∥2
≍p N−1. Hence, the bias term induced

by the rotational break will dominate the variance, and the split-sample method is superior to both the

pseudo- and rotated factor methods.

Note that because the leading term associated with are different for the pseudo- and rotated methods,

their specific ranking will depend on the DGP.

B.5.2 ν ∈ (0.5, 1) and α = ν

In this case, the expansion of the rotated method remains the same as Equation (B.19), but the expansion

for the squared bias of the pseudo method has an additional term due to the shift break. Specifically

∥∥∥∥c⊤
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=

∥∥∥∥∥∥∥
(I − Z) −

(
Λ⊤

1 Λ1
N

)−1(
F̃ ⊤

P Gr

T

)−1
F̃ ⊤

P Gp

T

W ⊤W

N

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T

⊤

β

∥∥∥∥∥∥∥
2

+ op

(
N2ν−2

)
, (B.20)

so the specific ranking between the rotated and pseudo-factor method depends the DGP. By the same

argument, the split-sample factors still remain better than the others.

B.5.3 ν ∈ (0.5, 1) and α ∈ (ν, 1)

The expansion for the rotated factors remains the same as Equation (B.19). However, for the pseudo-

factors, the bias term induced by the shift break is now the leading term, i.e.
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≍pN2α−2. (B.21)

Recall that ∥µT +h − µ̂S,T +h∥2 ≍p N−1, so we have

∥µT +h − µ̂P,T +h∥2/∥µT +h − µ̂S,T +h∥2 → ∞,

∥µT +h − µ̂R,T +h∥2/∥µT +h − µ̂S,T +h∥2 → ∞.

B.5.4 ν ∈ (0.5, 1) and α = 1

The expansion of the rotated factor estimator remains the same as Equation (B.19). The pseudo-factor

method is the least effective estimator, because
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P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

∥∥∥∥2

=

∥∥∥∥∥∥∥
(Λ⊤

1 Λ1
N

)−1(
F̃ ⊤

P Gr

T

)−1
F̃ ⊤

P Gp

T

W ⊤W

N

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T

⊤

β

∥∥∥∥∥∥∥
2

≍p 1,

and ∥µT +h − µ̂S,T +h∥ ≍p N−1.

77



B.5.5 ν = 1 and α < 1

The squared bias terms for the pseudo- and rotated factors are respectively

∥∥∥∥c⊤
T θ − c̃⊤

P,T

(
C̃⊤

P C̃P

)−1
C̃⊤

P Cθ

∥∥∥∥2

=

∥∥∥∥∥∥∥
(I − Z)

fT −
G⊤

p C̃P

T

(
C̃⊤

P C̃P

T

)−1

c̃P,T

⊤

β

∥∥∥∥∥∥∥
2

+ op (1)

≍p 1,∥∥∥∥c⊤
T θ − (c̃R,T )⊤

(
C̃⊤

R C̃R

)−1
C̃⊤

R Cθ

∥∥∥∥2

=

∥∥∥∥∥∥∥
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fT − F̃ ⊤
2 C̃R,2

T

(
C̃⊤

R C̃R

T

)−1

c̃R,T

⊤

β
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2

+ op (1)

≍p 1.

Again, these two leading terms are algebraically different, though of the same order. Both are dominated

by the split-sample method.

B.5.6 ν = 1 and α = 1

The squared bias terms for the pseudo- and rotated factors are, respectively,
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both of which dominate their variance terms. The ranking between them depends on the realisation of the

cross term. ■

C Forecasting Proofs

We first prove the following lemma, which establishes that the cross-validation estimate θ̃(m)t,h is uniformly

close to θ̂(m).

Lemma 11. If ut is piece-wise stationary and ergodic such that its pre- and post-break second moments

satisfy E∥u1t∥2 < ∞, E∥u2t∥2 < ∞, and g(u) is continuously differentiable at µ = E(ut), then for the full

sample estimator µ̂ = 1
T

∑T
t=1 ut and leave h out estimator µ̃t,h = (T + 1 − 2h)−1∑

|j−t|<h uj,

max
1≤t≤T

∥∥∥√T (g(µ̂) − g(µ̃t,h))
∥∥∥ = op(1)

Lemma 11 establishes that Lemma 1 of Cheng and Hansen (2015) still holds for data that is subject to

structural break but is still piece-wise stationary.

Proof of Lemma 11. Suppose that µt is piece-wise stationary and ergodic, such that

ut =


u1t, t = 1, . . . , πT,

u2t, t = πT + 1, . . . , T,

E(u1t) = µ1 < ∞, E |u1t|2 < ∞, and

E(u2t) = µ2 < ∞, E |u2t|2 < ∞.

We have

max
1≤t≤T

∥ut∥ = max
(

max
1≤t≤πT

∥u1t∥, max
πT +1≤t≤T

∥u2t∥
)

= max
(
op

(√
T
)

, op

(√
T
))

= op

(√
T
)

Second, since

µ̂ − µ̃t,h = 1 − 2h

T (T + 1 − 2h)

T∑
t=1

ut + 1
T + 1 − 2h

∑
|j−t|<h

uj
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then

max
1≤t≤T

∥µ̂ − µ̃t,h∥ ≤ Op

( 1
T

)
+ 2h

T + 1 − 2h
max

1≤t≤T
∥ut∥

= op

( 1√
T

)
.

An application of the Delta method then yields

max
1≤t≤T

∥∥∥√T (g(µ̂) − g(µ̃t,h))
∥∥∥ = op(1).

■

Proof of Proposition 3 and Theorem 3. The term r̃1T (m) can be decomposed further by directly replacing

C̃(m) with CH(m):

1
T2

T −h∑
t=T1+1−h

2ηt [µt − µ̃t(w)] = 1
T2

T −h∑
t=T1+1−h

2ηt

[(
µt − (c̃t(m) − ct(m))⊤ θ̃t,h(m)

)
− cHt(m)⊤θ̃t,h(m)

]

= 1
T2

T −h∑
t=T1+1−h

2ηt

(
µt − cHt(m)⊤θ(m)

)
+ 1

T2

T −h∑
t=T1+1−h

2ηt(cHt(m) − c̃t(m))⊤θ̃t,h

+ 1
T2

T −h∑
t=T1+1−h

2ηtc
⊤
t

(
θ̂(m) − θ̃t,h(m)

)
− 1

T2

T −h∑
t=T1+1−h

2ηtc
⊤
t

(
θ̂(m) − θ(m)

)
= r̃0

1T (m) + r̃2T (m) + r̃3T (m) + r̃4T (m).

The term r̃0
1T (m) and therefore r̃1T (w) are asymptotically normally distributed with zero mean. To see

this, Assumption 9 implies that for each m,

1
T2

T −h∑
t=T1+1−h

2ηt

(
µt − ct(m)⊤θ(m)

)
= 1

T2
(µ(2) − C2,H(m)θ(m))⊤η(2)

= 1
(1 − π)

√
T

1√
T

(µ(2) − C2,H(m)θ(m))⊤η(2)

d→ S1(m) ∼ N(0, σ2Q(m))

where Q(m) = plimT →∞
1

(1−π)2
1
T (µ(2) − C2,H(m)θ(m))⊤(µ(2) − C2,H(m)θ(m)). Additionally,

r̃0
1T (w) d→ ξ1(w) =

3M∑
m=1

w(m)S1(m) (C.1)
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is a weighted sum of mean zero normal variables, and thus Eξ1(w) = 0.

It remains to show that terms r̃2T (w), r̃3T (w) and r̃4T (w) are op

(
1√
T

)
.

For term r̃4T (m),

θ̂(m) − θ(m) =
(
C̃(m)⊤C̃(m)

)−1
C̃(m)⊤y −

(
CH(m)⊤CH(m)

)−1
CH(m)⊤Y

=

( C̃(m)⊤C̃(m)
T

)−1

−
(
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T

)−1
 C̃(m)⊤Y

T

+
(
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T

)−1
(
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)⊤
Y

T
.

The first term is bounded by
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T

− CH(m)⊤CH(m)
T

=

(
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)⊤ (
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Op

(
1

δ2
NT

)
+ Op

(
Nα

N

)
, m = 1, . . . , M, Pseudo-factors, α < 1

Op

(
1

δ2
NT

)
, m = 1, . . . , M, Pseudo-factors, α = 1

Op

(
1

δ2
NT

)
, m = M + 1, . . . , 2M, Split-sample Factors

Op

(
1

δ2
NT

)
+ Op

(√
Nα

N

)
, m = 2M, . . . , 3M, Rotated Factors,

by Lemma 1 (a), Lemma 1 (b), Lemma 4 (a) and Lemma 3.

The second term is bounded by

(
C̃(m) − CH(m)

)⊤
Y

T

=



[
(F̃P −GrHG)⊤

Y

T , 0u

]
, m = 1, . . . , M, Pseudo-factors, α < 1,[

(F̃P −GHΞ)⊤
Y

T , 0u

]
, m = 1, . . . , M, Pseudo-factors, α = 1,[

(F̃1−F1H1)⊤
Y1

T + (F̃2−F2H2)⊤
Y2

T , 0u

]
, m = M + 1, . . . , 2M, Split-sample Factors,[

(F̃1−F1H1)⊤
Y1

T + (F̃2Z̃⊤−F2Z⊤H1)⊤
Y2

T , 0u

]
, m = 2M, . . . , 3M, Rotated Factors,
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=
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Therefore, term r̃4T (w) =
∑3M

m=1 r̃4T (m) = op

(
1√
T

)
.

Term r̃3T (m) can be bounded by

∥∥∥∥∥∥ 1
T2

T −h∑
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2ηtc
⊤
t
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Thus, r̃3T (w) =
∑3M

m=1 r̃3T (m) = op

(
1√
T

)
.

For term r̃2T (m), we have

1
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The first term is negligible because
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(
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The second term is negligible because

1
T2

T −h∑
t=T1+1−h

2ηt (ct(m) − c̃t(m))⊤ θ̂(m)

=



1
T2

∑T −h
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Therefore, r̃2T (w) =
∑3M

m=1 r̃2T (m) = op

(
1√
T

)
. This proves Proposition 3. The result in Theorem 3 follows

immediately. ■

D Empirical Data Description and Robustness Checks

D.1 Data Description

Table 7: Data Description

Short Name Description Group Trans. Include

RPI Real Personal Income Output and Income 5 TRUE

W875RX1 Real personal income ex transfer receipts Output and Income 5 TRUE

DPCERA3M086SBEA Real personal consumption expenditures Consumption, Orders, and Inventories 5 TRUE

CMRMTSPLx Real Manu. and Trade Industries Sales Consumption, Orders, and Inventories 5 TRUE

RETAILx Retail and Food Services Sales Consumption, Orders, and Inventories 5 TRUE

INDPRO IP Index Output and Income 5 TRUE

IPFPNSS IP: Final Products and Nonindustrial Supplies Output and Income 5 TRUE

IPFINAL IP: Final Products (Market Group) Output and Income 5 FALSE

IPCONGD IP: Consumer Goods Output and Income 5 FALSE

IPDCONGD IP: Durable Consumer Goods Output and Income 5 TRUE

IPNCONGD IP: Nondurable Consumer Goods Output and Income 5 TRUE

IPBUSEQ IP: Business Equipment Output and Income 5 TRUE

IPMAT IP: Materials Output and Income 5 FALSE

IPDMAT IP: Durable Materials Output and Income 5 TRUE
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IPNMAT IP: Nondurable Materials Output and Income 5 TRUE

IPMANSICS IP: Manufacturing (SIC) Output and Income 5 TRUE

IPB51222S IP: Residential Utilities Output and Income 5 TRUE

IPFUELS IP: Fuels Output and Income 5 TRUE

CUMFNS Capacity Utilization: Manufacturing Output and Income 2 TRUE

HWIURATIO Ratio of Help Wanted/No. Unemployed Labor Market 2 TRUE

CLF16OV Civilian Labor Force Labor Market 5 FALSE

CE16OV Civilian Employment Labor Market 5 FALSE

UNRATE Civilian Unemployment Rate Labor Market 2 TRUE

UEMPMEAN Average Duration of Unemployment (Weeks) Labor Market 2 TRUE

UEMPLT5 Civilians Unemployed - Less Than 5 Weeks Labor Market 5 TRUE

UEMP5TO14 Civilians Unemployed for 5-14 Weeks Labor Market 5 TRUE

UEMP15OV Civilians Unemployed - 15 Weeks and Over Labor Market 5 FALSE

UEMP15T26 Civilians Unemployed for 15-26 Weeks Labor Market 5 TRUE

UEMP27OV Civilians Unemployed for 27 Weeks and Over Labor Market 5 TRUE

CLAIMSx Initial Claims Labor Market 5 TRUE

PAYEMS All Employees: Total nonfarm Labor Market 5 TRUE

USGOOD All Employees: Goods-Producing Industries Labor Market 5 FALSE

CES1021000001 All Employees: Mining and Logging: Mining Labor Market 5 TRUE

USCONS All Employees: Construction Labor Market 5 TRUE

MANEMP All Employees: Manufacturing Labor Market 5 FALSE

DMANEMP All Employees: Durable goods Labor Market 5 TRUE

NDMANEMP All Employees: Nondurable goods Labor Market 5 TRUE

SRVPRD All Employees: Service-Providing Industries Labor Market 5 TRUE

USTPU All Employees: Trade, Transportation and Utilities Labor Market 5 TRUE

USWTRADE All Employees: Wholesale Trade Labor Market 5 TRUE

USTRADE All Employees: Retail Trade Labor Market 5 TRUE

USFIRE All Employees: Financial Activities Labor Market 5 TRUE

USGOVT All Employees: Government Labor Market 5 TRUE

CES0600000007 Avg Weekly Hours : Goods-Producing Labor Market 1 TRUE

AWOTMAN Avg Weekly Overtime Hours : Manufacturing Labor Market 2 TRUE

AWHMAN Avg Weekly Hours : Manufacturing Labor Market 1 TRUE

HOUST Housing Starts: Total New Privately Owned Housing 4 FALSE

HOUSTNE Housing Starts, Northeast Housing 4 FALSE

HOUSTMW Housing Starts, Midwest Housing 4 FALSE

HOUSTS Housing Starts, South Housing 4 FALSE

HOUSTW Housing Starts, West Housing 4 FALSE

PERMIT New Private Housing Permits (SAAR) Housing 4 FALSE

PERMITNE New Private Housing Permits, Northeast (SAAR) Housing 4 FALSE

PERMITMW New Private Housing Permits, Midwest (SAAR) Housing 4 FALSE

PERMITS New Private Housing Permits, South (SAAR) Housing 4 FALSE

PERMITW New Private Housing Permits, West (SAAR) Housing 4 FALSE

ACOGNO New Orders for Consumer Goods Consumption, Orders, and Inventories 5 TRUE

AMDMNOx New Orders for Durable Goods Consumption, Orders, and Inventories 5 TRUE

ANDENOx New Orders for Nondefense Capital Goods Consumption, Orders, and Inventories 5 TRUE

AMDMUOx Unfilled Orders for Durable Goods Consumption, Orders, and Inventories 5 TRUE

BUSINVx Total Business Inventories Consumption, Orders, and Inventories 5 TRUE

ISRATIOx Total Business: Inventories to Sales Ratio Consumption, Orders, and Inventories 2 TRUE

M1SL M1 Money Stock Money and Credit 6 FALSE

M2SL M2 Money Stock Money and Credit 6 FALSE

M2REAL Real M2 Money Stock Money and Credit 5 TRUE

BOGMBASE Monetary Base Money and Credit 6 TRUE

TOTRESNS Total Reserves of Depository Institutions Money and Credit 6 FALSE

NONBORRES Reserves Of Depository Institutions Money and Credit 7 FALSE

BUSLOANS Commercial and Industrial Loans Money and Credit 6 TRUE
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REALLN Real Estate Loans at All Commercial Banks Money and Credit 6 TRUE

NONREVSL Total Nonrevolving Credit Money and Credit 6 TRUE

CONSPI Nonrevolving consumer credit to Personal Income Money and Credit 2 TRUE

S.P.500 SandP’s Common Stock Price Index: Composite Stock Market 5 TRUE

S.P.div.yield SandP’s Composite Common Stock: Dividend Yield Stock Market 2 TRUE

S.P.PE.ratio SandP’s Composite Common Stock: Price-Earnings Ratio Stock Market 5 TRUE

FEDFUNDS Effective Federal Funds Rate Interest and Exchange Rates 2 TRUE

CP3Mx 3-Month AA Financial Commercial Paper Rate Interest and Exchange Rates 2 FALSE

TB3MS 3-Month Treasury Bill: Interest and Exchange Rates 2 FALSE

TB6MS 6-Month Treasury Bill: Interest and Exchange Rates 2 FALSE

GS1 1-Year Treasury Rate Interest and Exchange Rates 2 FALSE

GS5 5-Year Treasury Rate Interest and Exchange Rates 2 FALSE

GS10 10-Year Treasury Rate Interest and Exchange Rates 2 FALSE

AAA Moody’s Seasoned Aaa Corporate Bond Yield Interest and Exchange Rates 2 FALSE

BAA Moody’s Seasoned Baa Corporate Bond Yield Interest and Exchange Rates 2 FALSE

COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

TB3SMFFM 3-Month Treasury C Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

TB6SMFFM 6-Month Treasury C Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

T1YFFM 1-Year Treasury C Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

T5YFFM 5-Year Treasury C Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

T10YFFM 10-Year Treasury C Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Interest and Exchange Rates 1 TRUE

TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index Interest and Exchange Rates 5 TRUE

EXSZUSx Switzerland / U.S. Foreign Exchange Rate Interest and Exchange Rates 5 TRUE

EXJPUSx Japan / U.S. Foreign Exchange Rate Interest and Exchange Rates 5 TRUE

EXUSUKx U.S. / U.K. Foreign Exchange Rate Interest and Exchange Rates 5 TRUE

EXCAUSx Canada / U.S. Foreign Exchange Rate Interest and Exchange Rates 5 TRUE

WPSFD49207 PPI: Finished Goods Prices 6 TRUE

WPSFD49502 PPI: Finished Consumer Goods Prices 6 TRUE

WPSID61 PPI: Intermediate Materials Prices 6 TRUE

WPSID62 PPI: Crude Materials Prices 6 TRUE

OILPRICEx Crude Oil, spliced WTI and Cushing Prices 6 TRUE

PPICMM PPI: Metals and metal products: Prices 6 TRUE

CPIAUCSL CPI : All Items Prices 6 TRUE

CPIAPPSL CPI : Apparel Prices 6 TRUE

CPITRNSL CPI : Transportation Prices 6 TRUE

CPIMEDSL CPI : Medical Care Prices 6 TRUE

CUSR0000SAC CPI : Commodities Prices 6 TRUE

CUSR0000SAD CPI : Durables Prices 6 TRUE

CUSR0000SAS CPI : Services Prices 6 TRUE

CPIULFSL CPI : All Items Less Food Prices 6 FALSE

CUSR0000SA0L2 CPI : All items less shelter Prices 6 FALSE

CUSR0000SA0L5 CPI : All items less medical care Prices 6 FALSE

PCEPI Personal Cons. Expend.: Chain Index Prices 6 TRUE

DDURRG3M086SBEA Personal Cons. Exp: Durable goods Prices 6 TRUE

DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods Prices 6 TRUE

DSERRG3M086SBEA Personal Cons. Exp: Services Prices 6 TRUE

CES0600000008 Avg Hourly Earnings : Goods-Producing Labor Market 6 TRUE

CES2000000008 Avg Hourly Earnings : Construction Labor Market 6 TRUE

CES3000000008 Avg Hourly Earnings : Manufacturing Labor Market 6 TRUE

UMCSENTx Consumer Sentiment Index Consumption, Orders, and Inventories 2 TRUE

DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding Money and Credit 6 TRUE

DTCTHFNM Total Consumer Loans and Leases Outstanding Money and Credit 6 TRUE

INVEST Securities in Bank Credit at All Commercial Banks Money and Credit 6 TRUE
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VIXCLSx VIX Stock Market 1 TRUE

Note:

The columns Trans. denotes the following transformations for a series x: (1) no transformation; (2) ∆xt; (3) ∆2xt ; (4) log(xt); (5) ∆log(xt); (6)

∆2log(xt), (7) ∆(xt − xt−1 − 1.0). The Series column gives the short mnemonics in FRED, followed by a short description. The column Include

shows whether the series was used for factor estimation.

D.2 Empirical Robustness Checks

Table 8 and Table 9 are the analogous tables for the Stock and Watson (2012) dataset, using the Great

Moderation as a potential break. The results are qualitatively similar.

Table 8: Distributions of relative RMSE by forecasting method, relative

to DFM-5, h = 1, 2, 4, for Stock and Watson (2012) Dataset (1959 Q3

- 2008 Q3, 1984 Q1 Break)

Percentile h = 1 h = 2 h = 4

Model 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CV Select 0.962 1.000 1.030 0.970*** 1.001 1.035 0.986 1.010 1.044

CV Weighted 0.956* 0.996*** 1.017* 0.969** 0.999 1.023*** 0.979** 1.002 1.030

Equal Weighted 0.959*** 1.001 1.043 0.970*** 1.010 1.050 0.981*** 1.017 1.065

Mallows Select 0.973 1.004 1.045 0.973 0.997** 1.035 0.981*** 0.997* 1.017*

Mallows Weighted 0.957** 0.992* 1.024*** 0.967* 0.995* 1.016* 0.973* 1.001*** 1.027

Pseudo r 0.981 0.999 1.020** 0.982 0.998*** 1.021** 0.988 1.002 1.023***

Rotated 0.963 0.995** 1.033 0.977 1.000 1.026 0.981*** 0.998** 1.021**

Split-sample 1.100 1.225 1.367 1.151 1.262 1.391 1.155 1.312 1.496

Note:

Entries are percentiles of distributions of relative RMSEs over the 143 variables being forecasts, by series, at the specified

forecast horizon. RMSEs are relative to the DFM-5 forecast, as an expanding window exercise. All forecasts are direct.

86



Table 9: Median RMSE by forecasting method and category of series, rel-

ative to DFM-5, rolling forecast estimates for Stock and Watson (2012)

Dataset (1959 Q3 - 2008 Q3, 1984 Q1 Break).

Group CV Select CV Weighted Equal Weighted Mallows Select Mallows Weighted Pseudo r Rotated Split-sample

h = 1

GDP Components 1.009* 1.022 1.035 1.023 1.009* 1.025 1.017*** 1.358

Industrial Production 1.030 1.023 1.021*** 1.075 1.000* 1.006** 1.046 1.238

Employment 0.972 0.927* 0.976 1.064 0.936** 0.976 0.956*** 1.251

Unemployment 1.005*** 1.008 0.995* 1.042 1.004** 1.008 1.020 1.223

Housing 0.966 0.962 0.954* 0.980 0.959** 0.961*** 0.975 1.115

Inventories 1.032 1.007*** 1.008 1.040 0.995* 1.001** 1.035 1.258

Prices 0.978*** 0.980 0.976** 0.995 0.971* 0.995 0.979 1.141

Earnings 0.998 0.994 0.947* 0.995 0.993*** 0.999 0.984** 1.035

Interest Rates 0.995** 1.003*** 1.080 0.972* 1.042 1.080 1.023 1.415

Money 1.000 1.006 1.008 0.957* 1.038 0.995*** 0.978** 1.178

Exchange Rates 1.005 1.000 1.024 0.987* 1.005 0.993*** 0.991** 1.407

Stock Prices 1.011 1.000 0.974*** 0.956* 0.966** 1.004 1.005 1.197

Consumer Expectations 1.019*** 1.018** 1.113 1.040 1.043 1.007* 1.019*** 1.538

h = 2

GDP Components 1.020 1.017*** 1.039 1.022 1.006* 1.010** 1.020 1.371

Industrial Production 1.019 1.019 0.971* 1.018 0.980** 1.005 1.001*** 1.110

Employment 1.015 0.987 0.980** 1.064 0.983*** 0.976* 1.007 1.281

Unemployment 0.999* 1.007 1.039 0.999* 1.006*** 1.015 1.016 1.361

Housing 0.994*** 0.996 0.979* 1.046 0.983** 1.000 1.016 1.137

Inventories 0.983*** 0.968* 0.984 1.035 0.982** 1.001 1.016 1.301

Prices 0.999*** 1.003 1.032 0.987* 1.000 0.999*** 0.991** 1.243

Earnings 0.993 1.013 1.051 0.990** 0.996 0.990** 0.986* 1.245
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Interest Rates 0.953 0.948* 0.991 0.950** 0.951*** 0.990 0.974 1.316

Money 1.004 0.995* 1.003 1.009 0.998*** 0.998*** 0.997** 1.135

Exchange Rates 0.996 0.990 1.022 0.960* 0.996 0.986*** 0.981** 1.457

Stock Prices 0.973** 0.977 0.964* 0.973** 0.980 0.993 0.977 1.182

Consumer Expectations 1.043 1.026*** 1.051 0.963* 1.106 1.035 0.992** 1.417

h = 4

GDP Components 1.011 1.017 1.048 0.993* 1.010 0.999** 1.005*** 1.352

Industrial Production 1.017 0.979*** 0.974** 0.996 0.969* 1.000 0.998 1.150

Employment 1.031 0.996 0.961* 1.027 0.984** 0.990 0.989*** 1.311

Unemployment 1.016 1.012*** 0.961* 1.025 1.007** 1.024 1.022 1.144

Housing 1.049 1.033 1.026 0.976** 1.016*** 1.047 0.974* 1.411

Inventories 0.976*** 0.963* 0.991 0.982 0.972** 1.026 0.985 1.295

Prices 1.001 1.011 1.045 0.996* 1.006 0.999*** 0.996* 1.321

Earnings 1.007 0.997** 1.006 0.996* 1.000*** 1.009 1.014 1.154

Interest Rates 1.024*** 1.013** 1.136 1.002* 1.076 1.069 1.049 1.580

Money 0.992* 0.997*** 1.027 1.002 1.004 1.002 0.994** 1.365

Exchange Rates 1.047 1.015 1.094 0.988* 1.020 1.008*** 0.994** 1.569

Stock Prices 1.027 0.984* 1.007 0.985** 1.004 1.016 0.986*** 1.335

Consumer Expectations 1.003 1.001 1.011 0.990** 0.993 0.992*** 0.989* 1.214

Note:

Entries are median RMSEs, relative to DFM-5, for the row category of variables.
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